首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Transport of long-chain fatty acids (LCFA) across the cytoplasmic membrane of Escherichia coli requires functional fadL and fadD genes. The fadD gene codes for an acyl-CoA synthetase (fatty acid: CoA ligase (AMP forming] which has broad chain length specificity and is loosely bound to the cytoplasmic membrane. The fadL gene codes for a 43,000-dalton cytoplasmic membrane protein which, acting by an unknown mechanism, is needed specifically for LCFA transport. As a first step to define the role of the fadL gene product, studies were performed to determine if it functions as a LCFA receptor. The LCFA-binding activity was quantitated in intact cells in the absence of LCFA transport by comparing the binding of LCFA in fadD fadL and fadD fadL+ strains. These studies revealed that (i) fadD fadL+ strains bind 6-fold more LCFA than fadD fadL strains; (ii) fadD fadL strains harboring a plasmid containing the fadL gene bind 16-fold more LCFA than fadD fadL strains harboring only the plasmid vector; and (iii) the fadL-specific LCFA-binding activity is regulated by the fadR gene and catabolite repression. Studies with fadL strains harboring fadL plasmids containing in vitro constructed deletions indicate that mutations which alter the physical properties of the 43,000-dalton fadL gene product also affect fadL gene product-specific LCFA-binding activity. Overall, these studies suggest that one role of the fadL gene product in the LCFA transport process is to sequester LCFA at sites in the cell membrane for transport.  相似文献   

8.
Candida albicans, grown aerobically in glucose-containing media, produced C14, C16 and C18 saturated long-chain alcohols only after the end of exponential growth. Contents of C14 alcohols were always lowest, and C16 and C18 alcohol contents about equal. Contents of all three classes of alcohol increased as the concentration of glucose in aerobic cultures harvested after 168 h incubation was raised from 1.0 to 30.0% (w/v). However, in 168 h anaerobic cultures, greatest long-chain alcohol contents in organisms were obtained using media containing 10% (w/v) glucose. Substituting glucose (10%, w/v) with the same concentration of galactose in aerobic cultures greatly decreased contents of long-chain alcohols, while inclusion of 10% (w/v) glycerol virtually abolished their synthesis. Supplementing anaerobic cultures with odd-chain fatty acids induced synthesis of odd-chain alcohols. Maximum conversion of fatty acid to the corresponding long-chain alcohol was observed with heptadecanoic acid. The effect of glucose on production of heptadecanol from exogenously provided heptadecanoic acid was similar to that observed on synthesis of the three major even-chain alcohols in media lacking a fatty-acid supplement. Cell-free extracts of organisms catalysed in vitro conversion of palmitoyl-CoA to 1-hexadecanol.  相似文献   

9.
Fungal sphingolipids contain ceramide with a very-long-chain fatty acid (C26). To investigate the physiological significance of the C26-substitution on this lipid, we performed a screen for mutants that are synthetically lethal with ELO3. Elo3p is a component of the ER-associated fatty acid elongase and is required for the final elongation cycle to produce C26 from C22/C24 fatty acids. elo3delta mutant cells thus contain C22/C24- instead of the natural C26-substituted ceramide. We now report that under these conditions, an otherwise nonessential, but also fungal-specific, structural modification of the major sterol of yeast, ergosterol, becomes essential, because mutations in ELO3 are synthetically lethal with mutations in ERG6. Erg6p catalyzes the methylation of carbon atom 24 in the aliphatic side chain of sterol. The lethality of an elo3delta erg6delta double mutant is rescued by supplementation with ergosterol but not with cholesterol, indicating a vital structural requirement for the ergosterol-specific methyl group. To characterize this structural requirement in more detail, we generated a strain that is temperature sensitive for the function of Erg6p in an elo3delta mutant background. Examination of raft association of the GPI-anchored Gas1p and plasma membrane ATPase, Pma1p, in the conditional elo3delta erg6(ts) double mutant, revealed a specific defect of the mutant to maintain raft association of preexisting Pma1p. Interestingly, in an elo3delta mutant at 37 degrees C, newly synthesized Pma1p failed to enter raft domains early in the biosynthetic pathway, and upon arrival at the plasma membrane was rerouted to the vacuole for degradation. These observations indicate that the C26 fatty acid substitution on lipids is important for establishing raft association of Pma1p and stabilizing the protein at the cell surface. Analysis of raft lipids in the conditional mutant strain revealed a selective enrichment of ergosterol in detergent-resistant membrane domains, indicating that specific structural determinants on both sterols and sphingolipids are required for their association into raft domains.  相似文献   

10.
11.
12.
13.
Elongation of long-chain fatty acids   总被引:19,自引:0,他引:19  
  相似文献   

14.
Denic V  Weissman JS 《Cell》2007,130(4):663-677
Very long-chain fatty acids (VLCFAs) are essential lipids whose functional diversity is enabled by variation in their chain length. The full VLCFA biosynthetic machinery and how this machinery generates structural diversity remain elusive. Proteoliposomes reconstituted here from purified membrane components-an elongase protein (Elop), a novel dehydratase, and two reductases-catalyzed repeated rounds of two-carbon addition that elongated shorter FAs into VLCFAs whose length was dictated by the specific Elop homolog present. Mutational analysis revealed that the Elop active site faces the cytosol, whereas VLCFA length is determined by a lysine near the luminal end of an Elop transmembrane helix. By stepping the lysine residue along one face of the helix toward the cytosol, we engineered novel synthases with correspondingly shorter VLCFA outputs. Thus the distance between the active site and the lysine residue determines chain length. Our results uncover a mutationally adjustable, caliper-like mechanism that generates the repertoire of cellular VLCFAs.  相似文献   

15.
1. Commercially available [2-14C]pyruvate and [2-14C]malonate were found to contain 3-6% (w/w) of [14C]acetate. 2. The contaminating [14C]acetate was efficiently utilized for fatty acid synthesis by isolated chloroplasts, whereas the parent materials were poorer substrates. 3. Maximum incorporation rates of the different substrates examined were (ng-atoms of C/h per mg of chlorophyll): [1-14C]acetate, 2676; [2-14C]pyruvate, 810; H14CO3-, 355; [2-14C]malonate, 19. 4. Products of CO2 fixation were probably not a significant carbon source for fatty acid synthesis in the presence of exogenous acetate.  相似文献   

16.
17.
The synthesis of the multienzyme complex rat liver fatty acid synthetase was investigated utilizing modifications of methods developed in the laboratory of Schimke (Schimke, R. T. (1964) J. Biol. Chem. 239, 3808-3817 and Arias, I. M., Doyle, D., and Schimke, R. T. (1969) J. Biol. Chem. 244, 3303-3315). The relative amounts of radioactivity from a pulse of labeled lysine appearing in polypeptides derived from purified synthetase complex can be measured compensating for the varying amounts of lysine per polypeptide chain. The results show that labeled amino acid is incorporated into polypeptides derived from the complex at heterogeneous rates. However, 10 to 15 hours after the administration of a pulse, the amount of label per lysine residue in these polypeptides is identical. The results support the previously proposed model of this multienzyme complex (Tweto, J., Dehlinger, P., and Larrabee, A. R. (1972) Biochem. Biophys. Res. Commun. 48, 1371-1377). The previous work and that reported here suggests the existence of a pool of synthetase subunits which is an obligatory intermediate in both synthesis and turnover of the complex. The results obtained in this work are consistent with this model if the exchange of subunits into the intact complex is a relatively slow process requiring several hours to reach equilibrium.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号