首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of Phaseolus vulgaris L. (cv. Stella) were grown in controlledconditions under three different irradiances of visible lightwith or without UV-B (280–320nm) radiation. The biologicallyeffective UV-B radiation (UV-BBE) was 6.17 kJ m–2 d–1,and simulated a c. 5% decrease in stratospheric ozone at 55.7?N,13.4?E. The photon flux densities of the photosyntheticallyactive radiation (PAR, 400–700 nm) were either 700 µmolm–2–1 (HL), 500, µmol m–2 s–1(ML) or 230 µmol m–2 s–1 PAR (LL). Under highlight (HL) conditions plus UV-B radiation, bean plants appearedmost resistant to the enhanced levels of UV-B radiation, andresponded only by increasing leaf thickness by c. 18%. A smallincrease in UV screening pigments was also observed. Both thelower irradiances (ML and LL) increased the sensitivity of theplants to UV-B radiation. Changes in leaf structure were alsoobserved. Photosystem II was inhibited under ML and LL togetherwith UV-B radiation, as determined by Chi fluorescence inductionand calculation of the fluorescence half-rise times. Leaf reflectivitymeasurements showed that the amount of PAR able to penetrateleaves of UV-B treated plants was reduced, and that a possiblecorrelation may exist between the reduced PAR levels, loss ofChi and lowered photosynthetic activity, especially for LL +UV-Bgrown plants, where surface reflection from leaves was highest.Changes in leaf chlorophyll content were mostly confined toplants grown under LL + UV-B, where a decrease of c. 20% wasfound. With regard to protective pigments (the carotenoids andUV screening pigments) plants subjected to different visiblelight conditions responded differently. Among the growth parametersmeasured, there was a substantial decrease in leaf area, particularlyunder LL + UV-B (c. 47% relative to controls), where leaf dryweight was also reduced by c. 25%. Key words: Chlorophyll fluorescence induction, bean, flavonoids, Phaseolus vulgaris, reflectance, UV-B radiation  相似文献   

2.
The impact of UV-B radiation (290–315 nm) on bacterialactivity and abundance in coastal water was studied in mesocosmexperiments in May 1994 and May 1995 at Kristineberg MarineResearch Station, Sweden. Mesocosms (6 m3) containing naturalpelagic communities were exposed either to ambient irradiation(AMB), ambient irradiation with enhanced UV-B (+UV) (0.7 W m–24 h every day around noon), or ambient irradiation screenedfor UV-B (–UV). Bacterial activity in the mesocosms wasmeasured by means of thymidine incorporation in short-term testsduring incubations at ambient irradiation, at ambient irradiationwith enhanced UV-B, and at ambient irradiation screened forUV-B. In +UV mesocosms, bacterial activity was significantlystimulated when incubated at ambient radiation. The stimulatingeffect was suggested to be due to an increase in carbon or nutrientsupply through a photodegradation of recalcitrant dissolvedorganic material (DOM). Low attenuation coefficients for UV-Band PAR (400–700 nm) in the +UV mesocosms supported thishypothesis. The bacterial activity in +UV mesocosms, however,was inhibited when incubations were made at enhanced UV-B irradiation,implying that the bacteria had become more sensitive to UV-Bradiation. The increased sensitivity to UV-B exposure in bacterialassemblages that already had been exposed and stressed by UV-Bradiation is suggested to be due to an overburdening of theenergy-consuming DNA repair mechanism. The data suggest thatincreased UV-B radiation, which might occur with ozone depletion,may both stimulate and suppress bacterial activity in coastalwaters, implying that the net outcome of enhanced UV-B radiationcould be an unchanged bacterial activity.  相似文献   

3.
The effects of blue light (B) pretreatments on internode extensiongrowth and their possible interaction with phytochrome mediatedresponses were examined in Sinapis alba seedlings grown for11 d under 280 µmol m–2 s–1 of continuousblue-deficient light from low pressure sodium lamps (SOX). SupplementaryB (16 µmol m–2 s–1) caused no detectable inhibitionof the first internode growth rate under continuous SOX, butgrowth rate was inhibited after transfer to darkness. This effect,and the growth promotion caused by far-red bend-of-day' lightpulses were additive. The addition of B at 16 µmol m–2s–1 during 11 d, or only during the first 9 or 10 d orthe latest 0.75, 1 or 2 d of the SOX pretreatment caused approximatelythe same extent of inhibition after the transition to darkness.A single hour of supplementary B before darkness caused morethan 50% of the maximum inhibition. However, 24 h of lower fluencerates of B (4 or 7 µmol m–2 s–1) were ineffective.Covering the internode during the supplementary B period didnot prevent the response to B after the transition to darkness.Far-red light given simultaneously with B (instead of the SOXbackground) reduced the inhibitory effect of B. Above a given threshold fluence rate, B perceived mainly inthe leaves inhibits extension growth in subsequent darkness,provided that high phytochrome photo-equilibria are presentduring the irradiation with B. Once triggered, this effect doesnot interact significantly with the ‘end-of-day’phytochrome effect. Key words: Blue light, extension growth, phytochrome  相似文献   

4.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

5.
The photosynthetic rate measured at 20°C was higher in ricegrown under 20/18°C day/night temperature and 350 µmoIquanta m–2s–1 than in rice grown under 25/20°Cand 1,000 µmol quanta m–2s–1, whereas therewas no difference in the photosynthetic rate measured at 25°Cbetween rice grown in these two ways. This difference was suggestedto be caused by an enhanced ribulose-l,5-bis-phosphate-regenerationcapacity in the low-temperature/ir-radiance-grown rice. (Received July 14, 1998; Accepted September 25, 1998)  相似文献   

6.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

7.
Uniculm barley plants were grown in 8 h photoperiods at a quantumflux density of 655 µE m–2 s–1. Groups ofplants were transferred to four different light environmentsfor one 8 h photoperiod (106, 270, 665, and 975 µE m–2s–1) and harvested at intervals throughout the succeedingdark period for subsequent carbohydrate analysis of the youngestmature leaf. Sucrose was the predominant carbohydrate in the leaves (attaininga level of c. 100 mg dm–2 after 8 h at 975 µE m–2s–1) but starch was also of significance (20 mg dm–2after 8 h at 975 µE m–2 s–1). During the dark period, following a photoperiod at the threehighest light levels (270, 665, and 975 µE m–2 s–1),sucrose was exported first while the starch level remained fairlyconstant. When the-sucrose level fell to 15–20 mg dm–2starch degradation began. This critical sucrose level was reachedearlier in those plants subjected to lower quantum flux densitiesduring the preceding photoperiod. The delay in the remobilizationof starch suggests an important regulatory mechanism which maybe dependent upon the sucrose level. At 106 µE m–2s–1 the sucrose level rose to only 10 mg dm–2. Herethere was no discernible delay in the depletion of sucrose orstarch.  相似文献   

8.
When young tomato plants grown in high light (400 µmolquanta m–2s–1 PAR) were transferred to low light(100 µmol quanta m–2s–1 PAR), non-cyclic electrontransport capacity was decreased and the rate of dark re-oxidationof Q, the first quinone electron acceptor of photosystemII, was decreased within 1–2 d. In contrast, the amountof coupling factor CF1, assayed by its ATPase activity, decreasedmore gradually over several days. The total chlorophyll contentper unit leaf area remained relatively constant, although thechlorophyll a/chlorophyll b ratio declined. When young tomato plants grown in low light were transferredto high light, the ATPase activity of isolated thylakoids increasedmarkedly within 1 d of transfer. This increase occurred morerapidly than changes in chlorophyll content per leaf area. Inaddition, in vivo chlorophyll fluorescence induction curvesindicate that forward electron transfer from Q occurredmore readily. The functional implications of these changes arediscussed. Key words: Tomato, leaves, light intensity, thylakoid membrane  相似文献   

9.
The distribution and partitioning of dry matter and photoassimilateof Lolium perenne was investigated under two light regimes providingphotosynthetically active radiation of 350 µmol m–2s–1 (low light treatment) or 1000 µmol m–2s–1 (high light treatment). Plants were grown at specificgrowth conditions in either soil or sand microcosm units tofollow the subsequent release of carbon into the rhizosphereand its consequent incorporation into the microbial biomass(soil system) or recovery as exudates (sand system). The distributionof recent assimilate between the plant and root released carbonpools was determined using 14CO2 pulse-chase methodology atboth light treatments and for both sand- and soil-grown seedlings.A significant (P  相似文献   

10.
We report that growth of Dunaliella salina at either 13°C/150µmol m–2s–1 or 30°C/2,500 µmol m–2s–1 results in the accumulation of comparable levels ofcarotenoids and the zeaxanthin-binding protein, Cbr. We concludethat carotenoid and Cbr abundance in this green alga respondto changes in PSII ‘excitation pressure’ ratherthan to high light per se. (Received September 19, 1996; Accepted November 20, 1996)  相似文献   

11.
Cell and chloroplast structural changes in palisade cells from mature leaves of Brassica napus L. cv. Paroll were quantified following exposure of plants to enhanced ultraviolet-B (280–320 nm; 13 kJ m?2 day?1 biologically effective UV-B) radiation at two different levels of photosynthetically active radiation (PAR, 400–700 nm; 200 and 700 μmol m?2 s?1). Short-term changes in leaf ultrastructure after 30 min and longer term changes after one day and one week were analyzed using stereological techniques incorporating light and electron microscopy and mathematical reconstruction of a mean cell for each sample. Ultraviolet-B together with either relatively high or low PAR resulted in cell structural changes resembling those typical of plants under shade conditions, with the most marked response occurring after 30 min of UV-B radiation. The ultrastructural changes at the cellular level were generally similar in both the relatively high and low PAR plus UV-B radiation treatments. The surface areas of all three thylakoid types, the appressed, non-appressed and margin thylakoids increased in the palisade tissue under supplemental UV-B irradiation. Although the appressed and non-appressed thylakoids increased in surface area, they did not increase equally, leaving open the possibility that the two thylakoid types have independent regulatory systems or different sensitivity to UV-B radiation. Increased thylakoid packing (mm2 thylakoid membrane per mm2 leaf surface) in UV-B-exposed plants may increase the statistical probability of photon interception. An increased level of UV-absorbing pigments after one week of supplemental UV-B radiation did not prevent or significantly ameliorate UV effects. Our data supported the assumption that UV-B radiation may have a regulatory role besides damaging effects and that an increased UV-B environment will likely increase this regulatory influence of UV-B radiation.  相似文献   

12.
The photochemical apparatus organization in the thylakoid membraneof the diatom Cylindrotheca fusiformis was investigated in cellsgrown under high and low irradiance. High light (HL, 200µE.m–2.s–1)grown cells displayed a relatively low fucoxanthin to chlorophyll(Chl) ratio, a low photosystem (PS) stoichiometry (PSII/PS I=1.3/1.0)and a smaller photosynthetic unit size in both PS I and PS II.Low light (LL, 30µE.m–2.s–1) grown cells displayeda 30% elevated fucoxanthin content, elevated PS II/PS I=3.9/1.0and larger photosynthetic unit size for PS II (a change of about100%) and for PS I (by about 30%). In agreement, SDS polyacrylamidegel electrophoresis of thylakoid membrane polypeptides showedgreater abundance of PS I, RuBP carboxylase and ATP synthasepolypeptides in HL cells. In contrast, LL grown cells exhibitedgreater abundance of light-harvesting complex polypeptides.Assuming an efficiency of red (670 nm) light utilization of1.0, the measured efficiency of blue (481 nm) light utilizationwas 0.64 (HL cells) and 0.72 (LL cells). The lower efficiencyof blue versus red light utilization is attributed to the quenchingof absorbed energy by non-fucoxanthin carotenoids. Differencesin the efficiency of blue light utilization between HL and LLgrown cells are attributed to the variable content of fucoxanthin.The results support the hypothesis of a variable Chl a-Chl c-fucoxanthinlight-harvesting antenna associated with PS II and PS I in Cylindrotheca. (Received February 10, 1988; Accepted April 6, 1988)  相似文献   

13.
Twenty-three genotypes of Indian mustard were studied for leafconductance (K1) at the floral bud initiation stage under non-stressconditions. The comparison of leaf conductance and of severalother measurements in the standard cultivar ‘Prakash’demonstrated that a screening procedure could be developed forleaf conductance prior to the flowering stage of mustard grownin the field. Errors due to short term environmental fluctuationsand to ontogenetic drift in conductance can be reduced if themeasurements are made on both the ad- and abaxial surfaces ofthe uppermost expanded leaf between 1200 h and 1400 h on cleardays. Irradiance levels can be neglected once a value of photosyntheticallyactive radiation (PAR) of about 1000 µE m–2 s–1at the adaxial surface or of 1200 µE m–2 s–1at the crop canopy has been reached. The water status of theplants is of no importance as long as the plants are not underundue stress. The different genotypes showed a genetic variabilityof 243% in leaf conductance.  相似文献   

14.
Light Activation of Rubisco by Rubisco Activase and Thylakoid Membranes   总被引:1,自引:0,他引:1  
A reconstituted system comprising ribulose bisphosphate carboxylase/oxygenase(rubisco), rubisco activase, washed thylakoid membranes, andATP was used to demonstrate a light-dependent stimulation ofrubisco activation. ATP, ribulose bisphosphate, H+, and Mg2+concentrations are normally light-dependent variables in thechloroplast but were maintained at pre-determined levels. Resultsindicated that rubisco activase and washed thylakoid membranesare sufficient to catalyze light stimulation of rubisco activationwith the reconstituted system, and that rubisco activase isrequired for this light stimulation. The washed thylakoid membranesdid not exhibit rubisco activase activity, nor was rubisco activaseprotein detected immunologically. Light-dependent activationof rubisco in the reconstituted system was similar in whole-chainand PS I electron transport reactions, and saturated at approximately100 µmol photons m–2 s–1. 1 Present address: Department of Biological Sciences, LouisianaTech University, Ruston, LA 71272, U.S.A.  相似文献   

15.
16.
The puhrinule of the terminal leaflet in the trifoliate leafof bean (Phaseolus vulgaris L.) responds to its continuous exposureto directional overhead light by increasing the elevation ofits attached lamina. Blue light drives this response, but theeffectiveness of unfiltered white light equalled, or exceededthe effectiveness of blue light at equivalent irradiances (200–800µmol m–2 s–1). Adding red light to blue lightenhanced the initial rate of response, and increased its steady-state.These effects of red light increased with irradiance. Adding200–800 µmol m–2 s–1 red light to 50µmol m–2 s–1 blue light was more effectivein enhancing the initial rate of response than adding blue lightat equivalent irradiances, whereas added blue light was moreeffective in increasing the steady-state. In continuous bluelight the initial (maximal) angular velocity of laminar reorientation,as well as the eventual steady-state of the response increasedlinearly with log PFD (up to 800 µmol m–2s–2).Laminar reorientation also took place in continuous red lightby itself, and the angular velocity of the response was initiallyhigh, then became considerably slower. The initial phase wasapparently independent of irradiance up to PFD 100 µmolm–2 s–1 but increased progressively with log PFDat higher irradiances. During the second phase, the rate increasedlinearly with irradiance, becoming saturated at PFD 200 µmolm–2 s–1. Key words: Phaseolus, phototropism, pulvinule, spectral dependence, trifoliate leaf movements  相似文献   

17.
Long-term effects of ultraviolet (UV) radiation on flavonoid biosynthesis were investigated in Arabidopsis thaliana using the sun simulators of the Helmholtz Zentrum München. The plants, which are widely used as a model system, were grown (1) at high photosynthetically active radiation (PAR; 1,310 µmol m?2?s?1) and high biologically effective UV irradiation (UV-BBE 180 mW m?2) during a whole vegetative growth period. Under this irradiation regime, the levels of quercetin products were distinctively elevated with increasing UV-B irradiance. (2) Cultivation at high PAR (1,270 µmol m?2?s?1) and low UV-B (UV-BBE 25 mW m?2) resulted in somewhat lower levels of quercetin products compared to the high-UV-BBE conditions, and only a slight increase with increasing UV-B irradiance was observed. On the other hand, when the plants were grown (3) at low PAR (540 µmol m?2?s?1) and high UV-B (UV-BBE 180 mW m?2), the accumulation of quercetin products strongly increased from very low levels with increasing amounts of UV-B but the accumulation of kaempferol derivatives and sinapoyl glucose was less pronounced. We conclude (4) that the accumulation of quercetin products triggered by PAR leads to a basic UV protection that is further increased by UV-B radiation. Based on our data, (5) a combined effect of PAR and different spectral sections of UV radiation is satisfactorily described by a biological weighting function, which again emphasizes the additional role of UV-A (315–400 nm) in UV action on A. thaliana.  相似文献   

18.
19.
Diel vertical migrations of the marine dinoflagellates Gonyaulaxpolyedra Stein and Ceratium furca (Ehr.) Clap, et Lachm. werefollowed in a laboratory tube (2.02 m x 0.25 m) under a 12:12hlight:dark cycle. The effects of temperature stratification,two levels of surface irradiance and nitrogen depletion on patternsof vertical migrations were examined. At temperatures between22–26°C with small temperature gradients, both speciesmigrated at a rate of 0.7 –1.0 m h–1. Steeper thermoclines(ca. 0.8°C 0.1 m–1) with temperatures below ca. 20°Ccaused a marked decrease in swimming speed which resulted inaccumulations of cells in these thermocline regions. Under conditionsof nutrient sufficiency both algae migrated into the surfacelayers at irradiance values of over 1000 µE m–2s–1. Increasing nitrogen depletion caused the downwardmigration of both algae to commence progressively earlier inthe day and before the end of the light period. The earlierdownward migrations enabled a more complete descent throughthe thermocline. Nitrogen depleted cells of Gonyaulax continuedto undertake vertical migrations but avoided high irradiancesthus forming subsurface maxima at irradiance levels close to150 µE m–2 s–1. Ceratium cells which exhaustedboth inorganic nitrogen and phosphorus ceased to migrate accompaniedby a large change in cellular fluorescence.  相似文献   

20.
Experiments were conducted in a gas exchange system to examinethe effect of a water stress, induced by –200 kPa polyethyleneglycol (PEG), on carbon dioxide and water vapour flux, fronddiffusive resistance, intercellular carbon dioxide concentration,carbon dioxide residual resistance and frond water potentialin the ostrich fern (Matteuccia struthiopteris (L.) Todaro).Measurements were taken 1 d after the application of PEG. Themeasurements were made on young fronds (8 d old) and maturefronds (20–24 d old) at PPFD's (Photosynthetic PhotonFlux Density) from 0–1400 µmol m–22 s–1.Water stress decreased the net photosynthesis rate in maturefronds at PPFD's of 210 µmol m–2 s–1 or greaterand increased the net photosynthesis rate below 210 µmolm–2 s–1 in young fronds. The increase in net photosynthesisin stressed young fronds was associated with a significant reductionin the dark respiration rate. Water stress and decreasing PPFD'sincreased frond diffusive resistance. Carbon dioxide concentrationin the intercellular spaces decreased with increasing frondage and PPFD's up to 200 µmol m–2 s–1. Theresidual resistance to carbon dioxide flux was not significantlyaffected by either frond age or water stress. Frond water potentialwas significantly lower in mature fronds than in young fronds. Key words: Matteuccia struthiopteris, Water relations, Photosynthesis, Dark respiration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号