首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of Aflatoxin Production by Surfactants   总被引:5,自引:3,他引:2       下载免费PDF全文
The effect of 12 surfactants on aflatoxin production, growth, and conidial germination by the fungus Aspergillus flavus is reported. Five nonionic surfactants, Triton X-100, Tergitol NP-7, Tergitol NP-10, polyoxyethylene (POE) 10 lauryl ether, and Latron AG-98, reduced aflatoxin production by 96 to 99% at 1% (wt/vol). Colony growth was restricted by the five nonionic surfactants at this concentration. Aflatoxin production was inhibited 31 to 53% by lower concentrations of Triton X-100 (0.001 to 0.0001%) at which colony growth was not affected. Triton X-301, a POE-derived anionic surfactant, had an effect on colony growth and aflatoxin production similar to that of the five POE-derived nonionic surfactants. Sodium dodecyl sulfate (SDS), an anionic surfactant, and dodecyltrimethylammonium bromide, a cationic surfactant, suppressed conidial germination at 1% (wt/vol). SDS had no effect on aflatoxin production or colony growth at 0.001%. The degree of aflatoxin inhibition by a surfactant appears to be a function of the length of the hydrophobic and hydrophilic chains of POE-derived surfactants.  相似文献   

2.
Vesicle to micelle transitions of sonicated liposomes of egg yolk phosphatidylcholine (EPC) induced by a homologous series of nonionic surfactants, poly(oxyethylene) cetyl ethers [POE(n) cetyl ether], were investigated by using the method of turbidity titrations. The turbidities of the mixed dispersions of sonicated vesicles and surfactant were systematically measured as a function of the surfactant added for a wide range of lipid concentrations (from 0.51 to 6.35 mM EPC). From the titration curves, two threshold points representing onset and complete solubilization of liposomal membranes were determined as a probe for the effect of the length of ethylene oxide (EO) moiety on the phase behavior of ternary system of POE(n) cetyl ethers-EPC-excess water. Patterns of turbidity curves and the surfactant concentrations at two threshold points as well as widths of region between two transitions, where lamellar sheets and mixed micelles may coexist, mainly depended on the length of EO head group. With changing the lengths, solubilization of liposomes and phase diagram showed optimal behavior. That is, in the middle range of EO numbers, it resulted in narrowest coexistence region between onset and complete solubilization. Assuming the equilibrium partitioning model, critical effective molar ratios of surfactant to lipid, Rsat, free surfactant concentrations, Dw, and the partition coefficient of surfactant between bilayer and aqueous phase, K, in surfactant-saturated liposomes were quantitatively determined as a function of EO number. Effective ratios, Rsol, and free surfactant concentration in mixed micelles were also determined. In addition, the effects of CMC and HLB of surfactants on the solubilization of liposome were discussed.  相似文献   

3.
The ability of several surface-active agents to stimulate the humoral immune response in mice against haptenated liposomes was tested. The surfactants were block copolymers of hydrophilic polyoxyethylene (POE) and hydrophobic polyoxypropylene (POP) that differed in m.w., percentage of POE, and mode of linkage of POP to POE. The liposomes were haptenated with tripeptide-enlarged dinitrophenyl coupled to phosphatidylethanolamine, which was incorporated into the liposomal membrane. Additional injection of mice with surfactant stimulated serum hemagglutination titers and splenic plaque-forming cell (PFC) numbers to varying extents. Block polymers with POP chains flanking a POE center, as well as polymers with POE chains flanking a POP center, displayed high adjuvant activity. These block polymers stimulated the antibody response in a dose-dependent manner. They stimulated the antibody response with both high and low antigen doses. Furthermore, the addition of one of these adjuvants (25R1) reduced the amount of carrier lipid required in the liposome in order to obtain an optimal antibody response. The surfactants, which displayed high adjuvant activity, did not interfere with liposome stability as measured with a liposome lysis assay. Moreover, in vitro preincubation of liposomes with a block polymer did not affect their immunogenicity. Optimal adjuvant activity was observed when both adjuvant and liposomes were administered by the same route. Simultaneous injection of both components, however, is not a prerequisite. Conclusively, it can be stated that nonionic block polymer surfactants are potent adjuvants for stimulation of the antibody response against haptenated liposomes.  相似文献   

4.
Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper   总被引:7,自引:0,他引:7  
Effects of five types of nonionic surfactant having a polyoxyethylene glycol (POG) group on enzymatic hydrolysis of used newspaper were studied. The surfactants examined in this work always enhanced the saccharification. The optimum surfactant concentration was 0.05% (wt/substrate wt) in the case of POG(21) sorbitane oleic ester. Among the surfactants, POG phenyl ether types showed the highest enhancement effect, for example, with two times higher conversion at 80 h than that without surfactant. Using POG nonylphenyl ether series, the effects of surfactant were considered from the point of the HLB (hydrophile-lypophile balance) value. The GFC (gel filtration chromatography) analysis of free enzyme quantity were also done to study the effect of surfactant on enzyme adsorption onto substrate. As the HLB value increased, the free enzyme quantity and the conversion both increased. It appears that surfactants help the enzyme to desorb from the binding site on the substrate surface after the completion of saccharification at that site.  相似文献   

5.
Useful materials can be made from cycloamylose (CA) and the functional properties of CA could be improved by complexation with surfactants. Isothermal titration calorimetry (ITC) was used to investigate interactions between CA and surfactants in buffered solutions. Three surfactants with C12 non-polar tail groups and charged [anionic: sodium dodecyl sulfate (SDS); cationic: dodecyl trimethylammonium bromide (DTAB)] or non-charged headgroups [non-ionic: polyoxyethylene 23 lauryl ether (Brij35)] were used in this study. The effects of temperature, pH, and salt concentration were also studied. All three surfactants bound to CA; however, Brij35 binding to CA was negligible. Enthalpy changes associated with binding of surfactants to CA were exothermic except for interactions measured at 50 °C. There was no effect of pH on surfactant demicellization or CA binding. Salt concentration affected surfactant demicellization, but the amount of SDS bound to CA at saturation was unaffected by salt. When the titration curves obtained for CA with SDS and DTAB were fitted, it could be analyzed using a model based on a single set of identical sites.  相似文献   

6.
The effect of surfactants on the aggregation state of amphotericin B   总被引:3,自引:0,他引:3  
We have studied the effect of two surfactants, one non-ionic, lauryl sucrose (LS) and the other ionic, sodium deoxycholate (DOC), on the aggregation state of amphotericin B (AmB) and its selectivity towards ergosterol and cholesterol. It is shown that the addition of these surfactants has very similar effects on the AmB micelles. Below the critical micellar concentration of the surfactants, mixed micelles with AmB are first formed as a result of the penetration of the surfactant molecules into the AmB micelles. At higher concentrations of the surfactant molecules, the micellar structure is completely destroyed and AmB is found as monomers in solution. When the concentration of the surfactant is further increased, micelles of the surfactant molecules are built up, AmB remaining in monomeric form. However, the critical micellar concentration of LS is modified by the presence of AmB in solution, while that of DOC is not affected, thereby indicating that the interactions of AmB with LS are stronger than those of DOC with AmB. We also show that both surfactants enhance the selectivity of the AmB binding to sterols at exactly the concentrations of the surfactants which induce the monomerization of the antibiotic. It is observed that the maximal selectivity is found at a concentration of the surfactants corresponding to their particular CMC in presence of the antibiotic.  相似文献   

7.
The purpose of this work was to evaluate the effect of commonly used surfactants (at 0.01% w/v concentration) on mechanical, thermal, and photostability of a monoclonal antibody (MAb1) of IgG1 sub-class and to evaluate the minimum concentration of surfactant (Polysorbate 80) required in protecting MAb1 from mechanical stress. Surfactants evaluated were non-ionic surfactants, Polysorbate 80, Polysorbate 20, Pluronic F-68 (polyoxyethylene-polyoxypropylene block polymer), Brij 35 (polyoxyethylene lauryl ether), Triton X-100, and an anionic surfactant, Caprylic acid (1-Heptanecarboxylic acid). After evaluating effect of surfactants and determining stabilizing effect of Polysorbate 80 against mechanical stress without compromising thermal and photostability of MAb1, the minimum concentration of Polysorbate 80 required for mechanical stability was further examined. Polysorbate 80 concentration was varied from 0 to 0.02%. Mechanical stability was evaluated by agitation of MAb1 at 300 rotations per minute at room temperature for 72 h. Samples were analyzed for purity by SEC-HPLC, turbidity by absorbance at 350 nm, visible particles by visual inspection, and sub-visible particles by light obscuration technique on a particle analyzer. All non-ionic surfactants tested showed a similar effect in protecting against mechanical stress and did not exhibit any significant negative effect on thermal and photostability. However, Caprylic acid had a slightly negative effect on mechanical and photostability when compared to the non-ionic surfactants or sample without surfactant. This work demonstrated that polysorbate 80 is better than other surfactants tested and that a concentration of at least 0.005% (w/v) Polysorbate 80 is needed to protect MAb1 against mechanical stress.  相似文献   

8.
The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation was exponential, indicating a high bioavailability of the solubilized hydrocarbons. Nonionic surfactants of the alkylethoxylate type and the alkylphenolethoxylate type with an average ethoxylate chain length of 9 to 12 monomers were toxic to a PAH-degrading Mycobacterium sp. and to several PAH-degrading mixed cultures. Toxicity of the surfactants decreased with increasing hydrophilicity, i.e., with increasing ethoxylate chain length. Nontoxic surfactants enhanced the degradation of fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.  相似文献   

9.
Disintegration by surfactants of egg yolk phosphatidylcholine vesicles stabilized with carboxymethylchitin was investigated by measuring the amount released of a marker dye from the vesicles. In solutions of pH around 7, anionic and nonionic surfactants caused vesicle disintegration at very low concentrations, while cationic surfactants produced a breakdown of the vesicles at rather high concentrations. Increase in the alkyl chain-length of surfactant molecules brought about decrease in the surfactant concentration at which vesicle disintegration starts. As the length of the polyoxyethylene chain in nonionic surfactant molecules increased, the tendency of vesicle disintegration to occur decreased. Both anionic and cationic surfactants gave clear solutions above their critical micelle concentrations when they acted on the phospholipid vesicles, whereas nonionic surfactants left ghost cell-like debris consisting of carboxymethylchitin molecules in their micellar solutions. The effect of pH on vesicle disintegration was notable for ionic surfactants but not for nonionic surfactants. Thus, anionic surfactants increased the degree of disintegration as pH increased, while cationic surfactants produced an identical vesicle disintegration curve below pH 8 above which the curve started to shift toward the lower concentration region of the agents. These findings were explained in terms of surfactant penetration into phospholipid bilayers and solubilization of phospholipid molecules by surfactant micelles.  相似文献   

10.
A triple system (inverse micellae) that simulates the membrane environment of the enzyme was studied. Inverse micellae were obtained using anionic (aerosol OT), synthetic (Brij 56), and natural (lecithin) surfactants. It was found that upon inclusion of an enzyme into inverse micellae, its activity can be regulated by changing the structure and nature of the surfactant matrix. It was shown that enzyme activity in micellar environment is much higher than in water solution. Moreover, the enzyme solubilized in inverse micellae (acid phosphatase) shows a superactivity. It was found that surfactants specifically interact with solubilized enzyme, and the activity of the enzyme is inversely proportional to surfactant concentration. The mechanisms of viscotropic regulation of enzyme activity are discussed.  相似文献   

11.
Sonicated lipid micelles, formed from phospholipids isolated from yolks of fresh hen eggs, were used as a model membrane system for studying the effects of several surfactants on membrane properties. The interactions of the surfactants with the model system were followed through the fluorescence of the hydrophobic probe l-anilino-8-naphthalenesulfonate. The surfactants investigated were polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene thioether (Sterox SK), mono-calcium salt of polymerized aryl alkyl sulfonic acids (Daxad 21), and alkylbenzyl quaternary ammonium halide (AHCO DD 50). All surfactants enhanced fluorescence of the membrane-bound probe, and the degree of this enhancement correlated with the previously established phytotoxicity of these substances. The results indicate that surfactants can produce distinct changes in artificial phospholipid membranes and suggest that this lipid interaction may account for altered membrane permeability characteristics in surfactant-treated plants. The effects are observable for surfactant concentrations as low as 0.0001% (w/v), representing an approximate 10-fold increase in sensitivity for detecting surfactant effects compared with previous results on permeability changes in isolated plant cells.  相似文献   

12.
The solubilization of canine cardiac and hepatic β-adrenergic receptors was characterized with 19 different ionic and nonionic surfactants and surfactant combinations. The effects of alterations in the hydrophobic and hydrophilic moieties of the nonpolar detergents were examined in relation to their efficacy in solubilizing these receptor molecules. Within this group of surfactants the more effective agents contained an average of 9–10 polyoxyethylene units per molecule. The best degree of β-receptor solubilization for both heart and liver was obtained with 1% Brij 96 or a combination of 1% digitonin with 0.25% Triton X-100. Hepatic but not cardiac β-receptors were solubilized by polyoxyethylene ether W-1 or by Triton X-100. Solubilization time courses indicated that the maximum degree of receptor solubilization occurred within 5 min at 0–4 °C. Solubilization temperatures were varied from 0 to 37 °C. Temperatures up to 30 °C increased numbers of cardiac receptors solubilized by 30% over those obtained at 0 °C. The same temperature changes had no significant effects on liver β-receptor solubilization. Increasing the solubilization temperature to 37 °C decreased the detectable number of β-receptors by 91 (liver) and 72% (heart). β-Receptors solubilized in the absence of receptor ligand were extremely labile with a half-life on the order of 90 min at 4 °C for both heart and liver. Occupation of the receptors by [125I]-iodohydroxybenzylpindolol prior to solubilization conferred a certain degree of stability on the receptors.  相似文献   

13.
Degradation of polychlorinated biphenyls (PCBs) in the environment is limited by their aqueous solubility and the degradative competence of indigenous populations. Field application vectors (FAVs) have been developed in which surfactants are used to both increase the solubility of the PCBs and support the growth of surfactant-degrading strains engineered for PCB degradation. Surfactant and PCB degradation by two recombinant strains were investigated. Pseudomonas putida IPL5 utilizes both alkylethoxylate [polyoxyethylene 10 lauryl ether (POL)] and alkylphenolethoxylate [Igepal CO-720 (IGP)] surfactants as growth substrates, but only degrades the ethoxylate moiety. The resulting degradation products from the alkyl- and alkylphenolethoxylate surfactants were 2-(dodecyloxy)ethanol and nonylphenoldiethoxylates, respectively. Ralstonia eutropha B30P4 grows on alkylethoxylate surfactants without the appearance of solvent-extractable degradation products. It also degrades the 2-(dodecyloxy)ethanol produced by strain IPL5 from the alkylethoxylate surfactants. The extent of degradation of the alkylethoxylate surfactant (POL) was greater for strain IPL5 (90%) than for B30P4 (60%) as determined by the cobaltothiocyanate active substances method (CTAS). The recombinant strain B30P4::TnPCB grew on biphenyl. In contrast, the recombinant strain IPL5::TnPCB could not grow on biphenyl, and PCB degradation was inhibited in the presence of biphenyl. The most extensive surfactant and PCB degradation was achieved by the use of both recombinant strains together in the absence of biphenyl. PCB (Aroclor 1242) and surfactant (POL) concentrations were reduced from 25 ppm and 2000 ppm, respectively, to 6.5 ppm and 225 ppm, without the accumulation of surfactant degradation products. Given the inherent complexity of commercial surfactant preparations, the use of recombinant consortia to achieve extensive surfactant and PCB degradation appears to be an environmentally acceptable and effective PCB remediation option. Received 04 October 1996/ Accepted in revised form 04 August 1997  相似文献   

14.
The effect of surfactants (two cationic, one anionic and three non-ionic) at 0.001, 0.01, 0.1 and 1.0 % concentrations on aflatoxin production, ergosterol content and sugar consumption by Aspergillus parasiticus (NRRL 2999) in YES liquid culture medium is reported. At 0.01% concentration, the cationic surfactants, cetyl dimethyl ammonium bromide (CDAB) and dodecyl trimethyl ammonium bromide (DTAB), and the anionic surfactant, sodium dodecyl sulfate (SDS), completely inhibited spore germination, while DTAB also inhibited the production of ergosterol and toxin (p < 0.05). At a concentration of 0.001%, CDAB was found to enhance toxin production, while SDS was found to inhibit it when compared with other surfactants. Non-ionic surfactants, polyoxyethylene sorbitan monolaurate (Tween-20), polyoxyethylene lauryl ether (Brij-35) and ethoxylated p-tert-octylphenol (Triton X-100) delayed the spore germination up to day 5 at all concentrations and inhibited toxin and ergosterol production at 0.001% concentration. The affect was found to be dose-dependent from 0.001% to 1%, for Triton X-100 only. Positive correlation between ergosterol content and toxin production in the presence of different surfactants at various time periods (3, 5, 7, 9 and 12 days) was found. Tween-20 was most effective in inhibiting toxin production on day 7, when aflatoxin production was found to be maximal in control group. Sugar consumption was directly proportional to the ergosterol content, showing a significant correlation with aflatoxin production.  相似文献   

15.
In the present study, we investigated the interaction of the non-ionic surfactants polyoxyethylene alkyl ethers (C(n)E(m)) with erythrocyte membranes. For this purpose we have performed hemolytic assays under isosmotic conditions with five surfactants in the 8 polyoxyethylene ether series. By applying to the hemolytic curves a quantitative treatment developed for the study of surface-active compounds on biomembranes, we could calculate the surfactant/lipid molar ratios for the onset of hemolysis (R(e)(sat)) and for complete hemolysis (R(e)(sol)). This approach also allowed the calculation of the binding constants for each surfactant to the erythrocyte membrane. Results in the C(n)E(m) series were compared to those obtained for Triton X-100, a well-known non-ionic surfactant with values of cmc and HLB in the range of the alkyl ethers studied. Inside the series the lytic effect increased with the more hydrophobic homologues (C(10)E(8)相似文献   

16.
In shaken cultures ofPhanerochœte chrysosporium, different Tweens gave rise to similar and high lignin peroxidase (LiP) activities. The polyoxyethylene-sorbitan (POE-S) moieties isolated from Tweens gave rise to somewhat lower LiP activities, whereas fatty acids isolated from Tweens gave rise to much lower LiP activities than parent Tweens. LiP activity appeared 3 d after addition of Tween 80 if this was added within the first 4 d after inoculation. Of the three chemical moieties contained in Tweens,i.e., fatty acids, sorbitan, and polyoxyethylene (POE), only the latter one significantly stimulated the LiP activity of the culture. The stimulatory effect of POE on the LiP activity increased till its molar mass of approx. 1 kDa, then it levelled off. The quantity of POE in the culture decreased with time. Tween 80, its POE-S moiety and POEs seem to enhance LiP production and not only their release.  相似文献   

17.
Phytophenols were solubilized in nonionic surfactant micelles to form antimicrobially active and thermodynamically stable microemulsions. Formulation of phytophenols in microemulsions has previously been shown to improve their antimicrobial activity in model microbiological and food systems. Carvacrol and eugenol were incorporated in micellar solutions of two nonionic surfactants (Surfynol® 485W and Surfynol® 465) by mixing at room temperature. Particle size of formed microemulsions was determined by dynamic light scattering, and structural information about the mixed micellar system was obtained by nuclear magnetic resonance spectroscopy (NMR). Uptake of carvacrol and eugenol in surfactant micelles as determined by ultrasonic velocity measurements was very rapid, e.g., below the maximum additive concentration, the phytophenols were completely solubilized in the micelles in less than 30 min. Depending on the surfactant–phytophenol combination, the self-assembled surfactant–phytophenol aggregates had mean particle diameters between 3 and 17 nm. Elucidation of the structure of aggregates by 1H NMR studies indicated that micelles had a “bracket-like” structure with phytophenols being located inside the palisade layer of the micelle in direct contact with adjacent surfactant monomers. Encapsulation of phytophenols in surfactant micelles enables the incorporation of large amounts of hydrophobic antimicrobials in aqueous phases. Formulation of antimicrobial microemulsions may thus offer a means to deliver high concentrations of phytophenols to the bacterial surfaces of foodborne pathogens to affect kill.  相似文献   

18.
The effects of seven surfactants on spermatozoa of the sea urchin, Hemicentrotus pulcherrimus, were studied. All these surfactants induced the acrosome reaction and inhibited the fertilizing capacity of spermatozoa. There was a statistically significant correlation between the concentrations that induce the acrosome reaction and inhibit fertilization. The critical micelle concentrations (CMC) of surfactants in sea water were almost even and these values, which are inherent physical properties of surfactants, did not provide a direct measure of their inhibitory effect of fertilization. Among seven surfactants, p-menthanyl-phenol polyoxyethylene (8.8) ether (TS-88) with a characteristic hydrophobes was the most potent both in the induction of acrosome reaction and in the inhibition of fertilization. Various ethylene oxide adducts to p-menthanyl-phenol were also tested for the purpose of comparison. It is suggested that the effects of surfactants on sea urchin spermatozoa at low concentrations reflect their activity associated with the hydrophobic group inherent in each surfactant.  相似文献   

19.
Pulmonary surfactant forms a monolayer of lipids and proteins at the alveolar air/liquid interface. Although cholesterol is a natural component of surfactant, its function in surface dynamics is unclear. To further elucidate the role of cholesterol in surfactant, we used a captive bubble surfactometer (CBS) to measure surface activity of spread films containing dipalmitoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylglycerol (DPPC/POPC/POPG, 50/30/20 molar percentages), surfactant protein B (SP-B, 0.75 mol %), and/or surfactant protein C (SP-C, 3 mol %) with up to 20 mol % cholesterol. A cholesterol concentration of 10 mol % was optimal for reaching and maintaining low surface tensions in SP-B-containing films but led to an increase in maximum surface tension in films containing SP-C. No effect of cholesterol on surface activity was found in films containing both SP-B and SP-C. Atomic force microscopy (AFM) was used, for the first time, to visualize the effect of cholesterol on topography of SP-B- and/or SP-C-containing films compressed to a surface tension of 22 mN/m. The protrusions found in the presence of cholesterol were homogeneously dispersed over the film, whereas in the absence of cholesterol the protrusions tended to be more clustered into network structures. A more homogeneous dispersion of surfactant lipid components may facilitate lipid insertion into the surfactant monolayer. Our data provide additional evidence that natural surfactant, containing SP-B and SP-C, is superior to surfactants lacking one of the components, and furthermore, this raises the possibility that the cholesterol found in surfactant of warm-blooded mammals does not have a function in surface activity.  相似文献   

20.
Effects of dodecyltrimethylammonium chloride (DTAC), dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium iodide (DTAI) on thermotropic phase behaviour of phosphatidylcholine bilayers containing cholesterol as well as on 1H NMR spectra were studied. Two series of experiments were performed. In the first one the surfactants were added to the water phase while in the other directly to the lipid phase (a mixed film from cholesterol, surfactant and phosphatidylcholine was formed). The effects of particular surfactants on the main phase transition temperature, Tm, were more pronounced when added to the lipid phase (2nd method) than to the water phase (1st method); the opposite happened when cholesterol was absent (Rózycka-Roszak and Pruchnik 2000, Z. Naturforsch. 55c, 240-244). Furthermore, in the case of the first method the transitions were asymmetrical while in the second method nearly symmetrical. It is suggested that surfactant poor and surfactant rich domains are formed when surfactants are added to the water phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号