首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated whether or not hydroxylamine (HA) and hydrazine (HZ) interact with heme bound to heme oxygenase-1. Anaerobic addition of either HA or HZ to the ferric heme-enzyme complex produced a low-spin heme species. Titration studies at different pHs revealed that the neutral form of each of HA and HZ selectively binds to the heme with dissociation constants of 9.8 and 1.8 mM, respectively. Electron spin resonance analysis suggested that the nitrogen atom of each amine is coordinated to the ferric heme iron. With a concentrated solution of the heme-enzyme complex, however, another species of HA binding appeared, in which the oxygen atom of HA is coordinated to the iron. This species showed an unusual low-spin signal which is similar to that of the ferric hydroperoxide species in the heme oxygenase reaction.  相似文献   

2.
The ferric form of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) displays a unique pH-dependent behavior involving the interconversion among a monomeric low-spin hemichrome, a dimeric high-spin aquomet six-coordinate derivative, and a dimeric high-spin five-coordinate species that prevail at acidic, neutral, and alkaline pH values, respectively. In the five-coordinate derivative, the iron atom is bound to a hydroxyl group on the distal side since the proximal Fe-histidine bond is broken, possibly due to the packing strain exerted by the Phe97 residue on the imidazole ring [Das, T. K., Boffi, A., Chiancone, E. and Rousseau, D. L. (1999) J. Biol. Chem. 274, 2916-2919]. To determine the proximal and distal effects on the coordination and spin state of the iron atom and on the association state, two heme pocket mutants have been investigated by means of optical absorption, resonance Raman spectroscopy, and analytical ultracentrifugation. Mutation of the distal histidine to an apolar valine causes dramatic changes in the coordination and spin state of the iron atom that lead to the formation of a five-coordinate derivative, in which the proximal Fe-histidine bond is retained, at acidic pH values and a high-spin, hydroxyl-bound six-coordinate derivative at neutral and alkaline pH values. At variance with native HbI, the His69 --> Val mutant is always high-spin and does not undergo dissociation into monomers at acidic pH values. The Phe97 --> Leu mutant, like the native protein, forms a monomeric hemichrome species at acidic pH values. However, at alkaline pH, it does not give rise to the unusual hydroxyl-bound five-coordinate derivative but forms a six-coordinate derivative with the proximal His and distal hydroxyl as iron ligands.  相似文献   

3.
P C Weber 《Biochemistry》1982,21(21):5116-5119
The cytochromes c' are a class of heme proteins whose native spectroscopic properties have been suggested to represent a quantum mechanical admixture of intermediate-(S = 3/2) and high-(S = 5/2) spin states. Here features of the cytochrome c' heme environment, as revealed by X-ray crystallographic studies of the dimeric cytochrome c' from Rhodospirillum molischianum, are related to the observed spectroscopic properties. The environment of the heme group in cytochrome c' supports the existence of the admixed spin state at neutral pH and suggests that pH-dependent transition to a pure high-spin state at alkaline pH involves deprotonation of the histidine axial ligand to the heme iron.  相似文献   

4.
Resonance Raman spectroscopy is used to probe the effect of calcium depletion on the heme group of horseradish peroxidase C at pH 8. Polarized Raman spectra are recorded with an argon ion laser at eight different wavelengths to provide a sound database for a reliable spectral decomposition. Upon calcium depletion, the spectrum is indicative of a predominantly pentacoordinated high spin state of the heme iron coexisting with small fractions of hexacoordinated high and low spin states. The dominant quantum mixed spin state of native ferric horseradish peroxidase, which is characteristic for class III peroxidases, is not detectable in the spectrum of the enzyme with partial distal Ca(2+) depletion. The quenching of the quantum mixed spin state and the predominance of the pentacoordinated high spin state are likely to arise from distortions induced by distal calcium depletion, which translates into a weaker Fe-N(epsilon)(His) bond and a more tilted imidazole. A correlation is proposed between the lower enzyme activity and the elimination of the pentacoordinated quantum mixed state upon Ca(2+) depletion.  相似文献   

5.
The X-ray crystal structure of the complex of salicylhydroxamic acid (SHA) with Arthromyces ramosus peroxidase (ARP) has been determined at 1.9 A resolution. The position of SHA in the active site of ARP is similar to that of the complex of benzhydroxamic acid (BHA) with ARP [Itakura, H., et al. (1997) FEBS Lett. 412, 107-110]. The aromatic ring of SHA binds to a hydrophobic region at the opening of the distal pocket, and the hydroxamic acid moiety forms hydrogen bonds with the His56, Arg52, and Pro154 residues but is not asscoiated with the heme iron. X-ray analyses of ARP-resorcinol and ARP-p-cresol complexes failed to identify the aromatic donor molecules, most likely due to the very low affinities of these aromatic donors for ARP. Therefore, we examined the locations of these and other aromatic donors on ARP by the molecular dynamics method and found that the benzene rings are trapped similarly by hydrophobic interactions with the Ala92, Pro156, Leu192, and Phe230 residues at the entrance of the heme pocket, but the dihedral angles between the benzene rings and the heme plane vary from donor to donor. The distances between the heme iron and protons of SHA and resorcinol are similar to those obtained by NMR relaxation. Although SHA and BHA are usually considered potent inhibitors for peroxidase, they were found to reduce compound I and compound II of ARP and horseradish peroxidase C in the same manner as p-cresol and resorcinol. The aforementioned spatial relationships of these aromatic donors to the heme iron in ARP are discussed with respect to the quantum chemical mechanism of electron transfer in peroxidase reactions.  相似文献   

6.
Human serum albumin (HSA), the most prominent protein in plasma, is best known for its exceptional ligand binding capacity. HSA participates in heme scavenging by binding the macrocycle at fatty acid site 1. In turn, heme endows HSA with globin-like reactivity and spectroscopic properties. A detailed pH-dependent kinetic and spectroscopic investigation of iron(II) heme-HSA and of its carbonylated form is reported here. Iron (II) heme-HSA is a mixture of a four-coordinate intermediate-spin species (predominant at pH 5.8 and 7.0), a five-coordinate high-spin form (mainly at pH 7.0), and a six-coordinate low-spin species (predominant at pH 10.0). The acidic-to-alkaline reversible transition reflects conformational changes leading to the coordination of the heme Fe(II) atom by the His146 residue via its nitrogen atom, both in the presence and in the absence of CO. The presence of several species accounts for the complex, multiexponential kinetics observed and reflects the very slow interconversion between the different species observed both for CO association to the free iron(II) heme-HSA and for CO dissociation from CO-iron(II) heme-HSA as a function of pH.  相似文献   

7.
Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution   总被引:4,自引:0,他引:4  
The crystal structure of the ferric form of myoglobin from the mollusc Aplysia limacina has been refined at 1.6 A resolution, by restrained crystallographic refinement methods. The crystallographic R-factor is 0.19. The tertiary structure of the molecule conforms to the common globin fold, consisting of eight alpha-helices. The N-terminal helix A and helix G deviate significantly from linearity. The distal residue is recognized as Val63 (E7), which, however, does not contact the heme directly. Moreover the sixth (distal) co-ordination position of heme iron is not occupied by a water molecule at neutrality, i.e. below the acid-alkaline transition point of A. limacina myoglobin. The heme group sits in its crevice in the conventional orientation and no signs of heme isomerism are evident. The iron atom is 0.26 A out of the porphyrin plane, with a mean Fe-N (porphyrin) distance of 2.01 A. The co-ordination bond to the proximal histidine has a length of 2.05 A, and forms an angle of 4 degrees with the heme normal. A plane containing the imidazole ring of the proximal His intersects the heme at an angle of 29 degrees with the (porphyrin) 4N-2N direction. Inspection of the structure of pH 9.0 indicates that a hydroxyl ion is bound to the Fe sixth co-ordination position.  相似文献   

8.
The heme iron coordination of unfolded ferric and ferrous cytochrome c in the presence of 7-9 M urea at different pH values has been probed by several spectroscopic techniques including magnetic and natural circular dichroism (CD), electrochemistry, UV-visible (UV-vis) absorption and resonance Raman (RR). In 7-9 M urea at neutral pH, ferric cytochrome c is found to be predominantly a low spin bis-His-ligated heme center. In acidic 9 M urea solutions the UV-vis and near-infrared (NIR) magnetic circular dichroism (MCD) measurements have for the first time revealed the formation of a high spin His/H(2)O complex. The pK(a) for the neutral to acidic conversion is 5.2. In 9 M urea, ferrous cytochrome c is shown to retain its native ligation structure at pH 7. Formation of a five-coordinate high spin complex in equilibrium with the native form of ferrous cytochrome c takes place below the pK(a) 4.8. The formal redox potential of the His/H(2)O complex of cytochrome c in 9 M urea at pH 3 was estimated to be -0.13 V, ca. 100 mV more positive than E degrees ' estimated for the bis-His complex of cytochrome c in urea solution at pH 7.  相似文献   

9.
The endogenous calcium ion (Ca2+) in horseradish peroxidase (HRP) was removed to cause substantial changes in the proton NMR spectra of the enzyme in various oxidation/spin states. The spectral changes were interpreted as arising from the substantial alterations in the heme environments, most likely the heme proximal and distal sides. The comparative kinetic and redox studies revealed that these conformational changes affect the reduction process of compound II, resulting in the decrease of the enzymatic activity of HRP. It is also revealed from the ESR spectrum and the temperature dependences of the NMR and optical absorption spectra of the Ca2+-free enzyme that the heme iron atom of the Ca2+-free enzyme is in a thermal spin mixing between ferric high and low spin states, in contrast to that of the native enzyme. These results show that Ca2+ functions in maintaining the protein structure in the heme environments as well as the spin state of the heme iron, in favor of the enzymatic activity of HRP.  相似文献   

10.
Hmu O, a heme degradation enzyme in Corynebacterium diphtheriae, forms a stoichiometric complex with iron protoporphyrin IX and catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. Using a multitude of spectroscopic techniques, we have determined the axial ligand coordination of the heme-Hmu O complex. The ferric complex shows a pH-dependent reversible transition between a water-bound hexacoordinate high spin neutral pH form and an alkaline form, having high spin and low spin states, with a pK(a) of 9. (1)H NMR, EPR, and resonance Raman of the heme-Hmu O complex establish that a neutral imidazole of a histidine residue is the proximal ligand of the complex, similar to mammalian heme oxygenase. EPR of the deoxy cobalt porphyrin IX-Hmu O complex confirms this proximal histidine coordination. Oxy cobalt-Hmu O EPR reveals a hydrogen-bonding interaction between the O(2) and an exchangeable proton in the Hmu O distal pocket and two distinct orientations for the bound O(2). Mammalian heme oxygenase has only one O(2) orientation. This difference and the mixed spin states at alkaline pH indicate structural differences in the distal environment between Hmu O and its mammalian counterpart.  相似文献   

11.
We have examined the effects of active site residues on ligand binding to the heme iron of mouse neuroglobin using steady-state and time-resolved visible spectroscopy. Absorption spectra of the native protein, mutants H64L and K67L and double mutant H64L/K67L were recorded for the ferric and ferrous states over a wide pH range (pH 4-11), which allowed us to identify a number of different species with different ligands at the sixth coordination, to characterize their spectroscopic properties, and to determine the pK values of active site residues. In flash photolysis experiments on CO-ligated samples, reaction intermediates and the competition of ligands for the sixth coordination were studied. These data provide insights into structural changes in the active site and the role of the key residues His64 and Lys67. His64 interferes with exogenous ligand access to the heme iron. Lys67 sequesters the distal pocket from the solvent. The heme iron is very reactive, as inferred from the fast ligand binding kinetics and the ability to bind water or hydroxyl ligands to the ferrous heme. Fast bond formation favors geminate rebinding; yet the large fraction of bimolecular rebinding observed in the kinetics implies that ligand escape from the distal pocket is highly efficient. Even slight pH variations cause pronounced changes in the association rate of exogenous ligands near physiological pH, which may be important in functional processes.  相似文献   

12.
We have previously shown [Badyal, S. K., et al. (2006) J. Biol. Chem. 281, 24512-24520] that the distal histidine (His42) in the W41A variant of ascorbate peroxidase binds to the heme iron in the ferric form of the protein but that binding of the substrate triggers a conformational change in which His42 dissociates from the heme. In this work, we show that this conformational rearrangement also occurs upon reduction of the heme iron. Thus, we present X-ray crystallographic data to show that reduction of the heme leads to dissociation of His42 from the iron in the ferrous form of W41A; spectroscopic and ligand binding data support this observation. Structural evidence indicates that heme reduction occurs through formation of a reduced, bis-histidine-ligated species that subsequently decays by dissociation of His42 from the heme. Collectively, the data provide clear evidence that conformational movement within the same heme active site can be controlled by both ligand binding and metal oxidation state. These observations are consistent with emerging data on other, more complex regulatory and sensing heme proteins, and the data are discussed in the context of our developing views in this area.  相似文献   

13.
A spectroscopic study of soybean peroxidase (SBP) has been carried out using electronic absorption, resonance Raman (RR) and electron paramagnetic resonance (EPR) spectroscopy in order to determine the effects of temperature on the heme spin state. Upon lowering the temperature a transition from high spin to low spin is induced in SBP resulting from conformational changes in the heme cavity, including a contraction of the heme core, the reorientation of the vinyl group in position 2 of the porphyrin macrocycle, and the binding of the distal His to the Fe atom. Moreover, the combined analysis of the data derived from the different techniques at both room and low temperatures demonstrates that at low temperature the quantum-mechanically admixed spin state (QS) of SBP has RR frequencies different from those observed for the QS species at room temperature.  相似文献   

14.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.  相似文献   

15.
The interaction of sodium dodecyl sulfate (SDS) at a concentration range (0-515 microM) below the critical micelle concentration (CMC approximately 0.83 mM) with human native and cross-linked oxyhemoglobin (oxyHb) and methemoglobin (metHb) has been investigated by optical spectroscopy and stopped-flow transient kinetic measurements. It is observed that the interaction of SDS with human native and cross-linked oxyHb shows the disappearance of the bands of oxyHb at 541 and 576 nm and the appearance at 537 nm. The resultant spectra are characteristic of low spin (Fe(3+)) hemichrome. Similarly SDS has been found to convert human native and cross-linked high spin (Fe(3+)) metHb to low spin (Fe(3+)) hemichrome. The interaction of SDS with oxyHb suggests a conformational change of the protein in the heme pocket, which may induce the binding of distal histidine to iron leading to the formation of superoxide radical. The formation of hemichrome from metHb is found to be concentration-dependent with SDS. The stopped flow transient kinetic measurements of the interaction of SDS with metHb show that at least four molecules of SDS interact with one molecule of metHb. The interaction of SDS with human cross-linked oxy and met hemoglobin shows results similar to those for human native oxy and met hemoglobin indicating that the covalent modification does not alter the interaction of SDS with cross-linked hemoglobin.  相似文献   

16.
Catalase HPII from Escherichia coli, a homotetramer of subunits with 753 residues, is the largest known catalase. The structure of native HPII has been refined at 1.9 A resolution using X-ray synchrotron data collected from crystals flash-cooled with liquid nitrogen. The crystallographic agreement factors R and R(free) are respectively 16.6% and 21.0%. The asymmetric unit of the crystal contains a whole molecule that shows accurate 222-point group symmetry. The structure of the central part of the HPII subunit gives a root mean square deviation of 1.5 A for 477 equivalencies with beef liver catalase. Most of the additional 276 residues of HPII are located in either an extended N-terminal arm or in a C-terminal domain organized with a flavodoxin-like topology. A small number of mostly hydrophilic interactions stabilize the relative orientation between the C-terminal domain and the core of the enzyme. The heme component of HPII is a cis-hydroxychlorin gamma-spirolactone in an orientation that is flipped 180 degrees with respect to the orientation of the heme found in beef liver catalase. The proximal ligand of the heme is Tyr415 which is joined by a covalent bond between its Cbeta atom and the Ndelta atom of His392. Over 2,700 well-defined solvent molecules have been identified filling a complex network of cavities and channels formed inside the molecule. Two channels lead close to the distal side heme pocket of each subunit suggesting separate inlet and exhaust functions. The longest channel, that begins in an adjacent subunit, is over 50 A in length, and the second channel is about 30 A in length. A third channel reaching the heme proximal side may provide access for the substrate needed to catalyze the heme modification and His-Tyr bond formation. HPII does not bind NADPH and the equivalent region to the NADPH binding pocket of bovine catalase, partially occluded in HPII by residues 585-590, corresponds to the entrance to the second channel. The heme distal pocket contains two solvent molecules, and the one closer to the iron atom appears to exhibit high mobility or low occupancy compatible with weak coordination.  相似文献   

17.
The topography of the active sites of native horseradish peroxidase and manganic horseradish peroxidase has been studied with the aid of a spin-labeled analog of benzhydroxamic acid (N-(1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxy)-p-aminobenzhydroxamic acid). The optical spectra of complexes between the spin-labeled analog of benzhydroxamic acid and Fe3+ or Mn3+ horseradish peroxidase resembled the spectra of the corresponding enzyme complexes with benzhydroxamic acid. Electron spin resonance (ESR) measurement indicated that at pH 7 the nitroxide moiety of the spin-labeled analog of benzhydroxamic acid became strongly immobilized when this label bound to either ferric or manganic horseradish peroxidase. The titration of horseradish peroxidase with the spin-labeled analog of benzhydroxamic acid revealed a single binding site with association constant Ka approximately 4.7 . 10(5) M-1. Since the interaction of ligands (e.g. F-, CN-) and H2O2 with horseradish peroxidase was found to displace the spin label, it was concluded that the spin label did not indeed bind to the active site of horseradish peroxidase. At alkaline pH values, the high spin iron of native horseradish peroxidase is converted to the low spin form and the binding of the spin-labeled analog of benzhydroxamic acid to horseradish peroxidase is completely inhibited. From the changes in the concentration of both bound and free spin label with pH, the pK value of the acid-alkali transition of horseradish peroxidase was found to be 10.5. The 2Tm value of the bound spin label varied inversely with temperature, reaching a value of 68.25 G at 0 degree C and 46.5 G at 52 degrees C. The dipolar interaction between the iron atom and the free radical accounted for a 12% decrease in the ESR signal intensity of the spin label bound to horseradish peroxidase. From this finding, the minimum distance between the iron atom and nitroxide group and hence a lower limit to the depth of the heme pocket of horseradish peroxidase was estimated to be 22 A.  相似文献   

18.
The heme vicinities of the acid and alkaline forms of native (Fd(III)) horseradish peroxidase were investigated in terms of the magnetic circular dichroism (MCD) spectroscopy. The MCD spectrum of the acid form of native horseradish peroxidase was characteristic of a ferric high spin heme group. The resemblance in the MCD spectrum between the acid form and acetato-iron (III)protoporphyrin IX dimethyl ester suggests that the heme iron of the acid form has the electronic structure similar to that in a pentocoordinated heme complex. The MCD spectra of native horseradish peroxidase did not shown any substantial pH dependence in the pH range from 5.20 to 9.00. The MCD spectral change indicated the pK value for the equilibrium between the acid and alkaline forms to be 11.0 which agrees with the results from other methods. The alkaline form of native horseradish peroxidase at pH 12.01 exhibited the MCD spectrum of a low spin complex. The near infrared MCD spectrum suggests that the alkaline form of native horseradish peroxidase has a 6th ligand somehow different from a normal nitrogen ligand such as histidine or lysine. It implicates that the alkaline form has an overall ligand field strength of between the low spin component of metmyoglobin hydroxide and metmyoglobin azide.  相似文献   

19.
Escherichia coli flavohemoglobin is endowed with the notable property of binding specifically unsaturated and/or cyclopropanated fatty acids both as free acids or incorporated into a phospholipid molecule. Unsaturated or cyclopropanated fatty acid binding to the ferric heme results in a spectral change observed in the visible absorption, resonance Raman, extended x-ray absorption fine spectroscopy (EXAFS), and x-ray absorption near edge spectroscopy (XANES) spectra. Resonance Raman spectra, measured on the flavohemoglobin heme domain, demonstrate that the lipid (linoleic acid or total lipid extracts)-induced spectral signals correspond to a transition from a five-coordinated (typical of the ligand-free protein) to a hexacoordinated, high spin heme iron. EXAFS and XANES measurements have been carried out both on the lipid-free and on the lipid-bound protein to assign the nature of ligand in the sixth coordination position of the ferric heme iron. EXAFS data analysis is consistent with the presence of a couple of atoms in the sixth coordination position at 2.7 A in the lipid-bound derivative (bonding interaction), whereas a contribution at 3.54 A (nonbonding interaction) can be singled out in the lipid-free protein. This last contribution is assigned to the CD1 carbon atoms of the distal LeuE11, in full agreement with crystallographic data on the lipid-free protein at 1.6 A resolution obtained in the present work. Thus, the contributions at 2.7 A distance from the heme iron are assigned to a couple of carbon atoms of the lipid acyl chain, possibly corresponding to the unsaturated carbons of the linoleic acid.  相似文献   

20.
Heme carrier HasA has a unique type of histidine/tyrosine heme iron ligation in which the iron ion is in a thermally driven two spin states equilibrium. We recently suggested that the H-bonding between Tyr75 and the invariantly conserved residue His83 modulates the strength of the iron-Tyr75 bond. To unravel the role of His83, we characterize the iron ligation and the electronic properties of both wild type and H83A mutant by a variety of spectroscopic techniques. Although His83 in wild type modulates the strength of the Tyr-iron bond, its removal causes detachment of the tyrosine ligand, thus giving rise to a series of pH-dependent equilibria among species with different axial ligation. The five coordinated species detected at physiological pH may represent a possible intermediate of the heme transfer mechanism to the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号