首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous reports have described both increased and decreased cyclic nucleotide phosphodiesterase (PDE) activity in dystrophic muscle. Total PDE activity was measured in hind leg muscle from a mouse model of Duchenne muscular dystrophy (mdx) and a genetic control strain at 5, 8, 10, and 15 weeks of age. Total PDE activity declined in fractions isolated from mdx muscle over this time period, but was stable in fractions from control mice. Compared with age-matched controls, younger mdx muscle had higher cAMP and cGMP PDE activity. However, at 15 weeks, fractions from both strains had similar cGMP PDE activity and mdx fractions had lower cAMP PDE activity than controls. Particulate fractions from mdx muscle showed an age-related decline in sensitivity to the PDE4 inhibitor RO 20-1724. A similar loss of sensitivity to the PDE2 inhibitor erythro-9-(2-hydroxyl-3-nonyl)-adenine (EHNA) was seen in a particulate fraction from mdx muscle and to a lesser degree in control muscle. These results suggest that the earlier disagreement regarding altered cyclic nucleotide metabolism in dystrophic muscle may be due to changes with age in PDE activity of dystrophic tissue. The age-related decline in particulate PDE activity seen in dystrophic muscle appears to be isozyme-specific and not due to a generalized decrease in total PDE activity.  相似文献   

2.
Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes   总被引:1,自引:0,他引:1  
Isoforms in the PDE1 family of cyclic nucleotide phosphodiesterases were recently found to comprise a significant portion of the cGMP-inhibited cAMP hydrolytic activity in human hearts. We examined the expression of PDE1 isoforms in human myocardium, characterized their catalytic activity, and quantified their contribution to cAMP hydrolytic and cGMP hydrolytic activity in subcellular fractions of this tissue. Western blotting with isoform-selective anti-PDE1 monoclonal antibodies showed PDE1C1 to be the principal isoform expressed in human myocardium. Immunohistochemical analysis showed that PDE1C1 is distributed along the Z-lines and M-lines of cardiac myocytes in a striated pattern that differs from that of the other major dual-specificity cyclic nucleotide phosphodiesterase in human myocardium, PDE3A. Most of the PDE1C1 activity was recovered in soluble fractions of human myocardium. It binds both cAMP and cGMP with K(m) values of approximately 1 microm and hydrolyzes both substrates with similar catalytic rates. PDE1C1 activity in subcellular fractions was quantified using a new PDE1-selective inhibitor, IC295. At substrate concentrations of 0.1 microm, PDE1C1 constitutes the great majority of cAMP hydrolytic and cGMP hydrolytic activity in soluble fractions and the majority of cGMP hydrolytic activity in microsomal fractions, whereas PDE3 constitutes the majority of cAMP hydrolytic activity in microsomal fractions. These results indicate that PDE1C1 is expressed at high levels in human cardiac myocytes with an intracellular distribution distinct from that of PDE3A and that it may have a role in the integration of cGMP-, cAMP- and Ca(2+)-mediated signaling in these cells.  相似文献   

3.
Left ventricular hypertrophy leads to heart failure and represents a high risk leading to premature death. Cyclic nucleotides (cAMP and cGMP) play a major role in heart contractility and cyclic nucleotide phosphodiesterases (PDEs) are involved in different stages of advanced cardiac diseases. We have investigated their contributions in the very initial stages of left ventricular hypertrophy development. Wistar male rats were treated over two weeks by chronic infusion of angiotensin II using osmotic mini-pumps. Left cardiac ventricles were used as total homogenates for analysis. PDE1 to PDE5 specific activities and protein and mRNA expressions were explored.Rats developed arterial hypertension associated with a slight cardiac hypertrophy (+24%). cAMP-PDE4 activity was specifically increased while cGMP-PDE activities were broadly increased (+130% for PDE1; +76% for PDE2; +113% for PDE5) and associated with increased expressions for PDE1A, PDE1C and PDE5A. The cGMP-PDE1 activation by Ca(2+)/CaM was reduced. BNP expression was increased by 3.5-fold, while NOX2 expression was reduced by 66% and AMP kinase activation was increased by 64%. In early cardiac hypertrophy induced by angiotensin II, all specific PDE activities in left cardiac ventricles were increased, favoring an increase in cGMP hydrolysis by PDE1, PDE2 and PDE5. Increased cAMP hydrolysis was related to PDE4. We observed the establishment of two cardioprotective mechanisms and we suggest that these mechanisms could lead to increase intracellular cGMP: i) increased expression of BNP could increase "particulate" cGMP pool; ii) increased activation of AMPK, subsequent to increase in PDE4 activity and 5'AMP generation, could elevate "soluble" cGMP pool by enhancing NO bioavailability through NOX2 down-regulation. More studies are needed to support these assumptions. Nevertheless, our results suggest a potential link between PDE4 and AMPK/NOX2 and they point out that cGMP-PDEs, especially PDE1 and PDE2, may be interesting therapeutic targets in preventing cardiac hypertrophy.  相似文献   

4.
The role of phosphodiesterase (PDE) isoforms in regulation of transepithelial Cl secretion was investigated using cultured monolayers of T84 cells grown on membrane filters. Identification of the major PDE isoforms present in these cells was determined using ion exchange chromatography in combination with biochemical assays for cGMP and cAMP hydrolysis. The most abundant PDE isoform in these cells was PDE4 accounting for 70-80% of the total cAMP hydrolysis within the cytosolic and membrane fractions from these cells. The PDE3 isoform was also identified in both cytosolic and membrane fractions accounting for 20% of the total cAMP hydrolysis in the cytosolic fraction and 15-30% of the total cAMP hydrolysis observed in the membrane fraction. A large portion of the total cGMP hydrolysis detected in cytosolic and membrane fractions of T84 cells was mediated by PDE5 (50-75%). Treatment of confluent monolayers of T84 cells with various PDE inhibitors produced significant increases in short-circuit current (Isc). The PDE3-selective inhibitors terqinsin, milrinone and cilostamide produced increases in Isc with EC50 values of 0.6 nM, 8.0 nM and 0.5 microM respectively. These values were in close agreement with the IC50 values for cAMP hydrolysis. The effects of the PDE1-(8-MM-IBMX) and PDE4-(RP-73401) selective inhibitors on Isc were significantly less potent than PDE3 inhibitors with EC50 values of >7 microM and >50 microM respectively. However, the effects of 8-MM-IBMX and terqinsin on Cl secretion were additive, suggesting that inhibition of PDE1 also increases Cl secretion. The effect of PDE inhibitors on Isc were significantly blocked by apical treatment with glibenclamide (an inhibitor of the CFTR Cl channel) and by basolateral bumetanide, an inhibitor of Na-K-2Cl cotransport activity. These results indicate that inhibition of PDE activity in T84 cells stimulates transepithelial Cl secretion and that PDE1 and PDE3 are involved in regulating the rate of secretion.  相似文献   

5.
We utilized rat fetal lung fibroblasts (RFL-6) to evaluate our PDE5 inhibitors at cellular level and observed a decrease in cGMP accumulation induced by sodium nitroprusside (SNP) and PDE5 inhibitors with passage. To further investigate this observation, we examined cGMP synthesis via soluble guanylyl cyclase (sGC) and degradation via phosphodiesterases (PDEs) at different passages. At passage (p)4, p9, p14, major cGMP and cAMP degradation activities were contributed by PDE5 and PDE4, respectively. The PDE5 activity decreased 50% from p4 to p14, while PDE4 activity doubled. The cGMP accumulation was evaluated in the presence of sodium nitroprusside (SNP) and/or PDE inhibitors in p4 and p14 cells. SNP together with sildenafil, a PDE5 inhibitor, induced dose-dependent increase in cGMP levels in cells at p4, but showed little effect on cells at p14. The possible down regulation of sGC at mRNA level was explored using real-time RT-PCR. The result showed the mRNA level of the alpha1 subunit of sGC decreased about 98% by p9, while the change on beta1 mRNA was minimal. Consistently, sGC activities in cell lysate decreased by 94% at p9. Forskolin stimulated a dramatic increase in cAMP levels in cells at all passages examined. Our results show that sGC activity decreased significantly and rapidly with passage due to a down regulation of the alpha1 subunit mRNA, yet the adenylyl cyclase activity was not compromised. This study further emphasized the importance of considering passage number when using cell culture as a model system to study NO/cGMP pathway.  相似文献   

6.
Chronic hypoxia (CH) augments endothelium-derived nitric oxide (NO)-dependent pulmonary vasodilation; however, responses to exogenous NO are reduced following CH in female rats. We hypothesized that CH-induced attenuation of NO-dependent pulmonary vasodilation is mediated by downregulation of vascular smooth muscle (VSM) soluble guanylyl cyclase (sGC) expression and/or activity, increased cGMP degradation by phosphodiesterase type 5 (PDE5), or decreased VSM sensitivity to cGMP. Experiments demonstrated attenuated vasodilatory responsiveness to the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate and to arterial boluses of dissolved NO solutions in isolated, saline-perfused lungs from CH vs. normoxic female rats. In additional experiments, the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, blocked vasodilation to NO donors in lungs from each group. However, CH was not associated with decreased pulmonary sGC expression or activity as assessed by Western blotting and cGMP radioimmunoassay, respectively. Consistent with our hypothesis, the selective PDE5 inhibitors dipyridamole and T-1032 augmented NO-dependent reactivity in lungs from CH rats, while having little effect in lungs from normoxic rats. However, the attenuated vasodilatory response to NO in CH lungs persisted after PDE5 inhibition. Furthermore, CH similarly inhibited vasodilatory responses to 8-bromoguanosine 3'5'-cyclic monophosphate. We conclude that attenuated NO-dependent pulmonary vasodilation after CH is not likely mediated by decreased sGC expression, but rather by increased cGMP degradation by PDE5 and decreased pulmonary VSM reactivity to cGMP.  相似文献   

7.
An increase in cAMP and/or cGMP induces vasodilation which could be potentiated by endothelium or NO-donors. Cyclic nucleotide phosphodiesterases (PDE) are differently distributed in vascular tissues. cAMP hydrolyzing PDE isozymes in endothelial cells are represented by PDE2 (cGMP stimulated-PDE) and PDE4 (cGMP insensitive-PDE), whereas in smooth muscle cells PDE3 (cGMP inhibited-PDE) and PDE4 are present. To investigate the role of NO in vasodilation induced by PDE inhibitors, we studied the effects of PDE3- or PDE4-inhibitor alone and their combination on cyclic nucleotide levels, on relaxation of precontracted aorta and on protein kinase implication. Furthermore, the direct effect of dinitrosyl iron complex (DNIC) was studied on purified recombinant PDE4B. The results show that: 1) in endothelial cells PDE4 inhibition may up-regulate basal production of NO, this effect being potentiated by PDE2 inhibition; 2) in smooth muscle cGMP produced by NO inhibits PDE3 and increases cAMP level allowing PDE4 to participate in vascular contraction; 3) protein kinase G mediates the relaxing effects of PDE3 or PDE4 inhibition. 4) DNIC inhibits non competitively PDE4B indicating a direct effect of NO on PDE4 which could explain an additive vasodilatory effect of NO. A direct and a cGMP related cross-talk between NO and cAMP-PDEs, may participate into the vasomodulation mediated by cAMP activation of protein kinase G.  相似文献   

8.
Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by the guanylyl cyclases which are found in the soluble (sGC) and particular isoforms. In the central nervous system, the nitric oxide (NO)-sensitive sGC isoform is the major enzyme responsible for cGMP synthesis. Phosphodiesterases (PDEs) are enzymes for hydrolysis of cGMP in the brain, and they are mainly isoforms 2, 5, and 9. The NO/cGMP signaling pathway has been shown to play an important role in the process underlying learning and memory. Aging is associated with an increase in PDE expression and activity and a decrease in cGMP concentration. In addition, aging is also associated with an enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity. The observed changes in NMDA receptor density along with the Ca2+/NO/cGMP pathway underscore the lower synaptic plasticity and cognitive performance during aging. This notion is in agreement with last data indicating that inhibitors of PDE2 and PDE9 improve learning and memory in older rats. In this review, we focus on recent studies supporting the role of Ca2+/NO/cGMP pathway in aging and Alzheimer's disease.  相似文献   

9.
Phosphodiesterases (PDEs) modulate the cellular proliferation involved in the pathophysiology of pulmonary hypertension (PH) by hydrolyzing cAMP and cGMP. The present study was designed to determine whether any of the recently identified PDEs (PDE7-PDE11) contribute to progressive pulmonary vascular remodeling in PH. All in vitro experiments were performed with lung tissue or pulmonary arterial smooth muscle cells (PASMCs) obtained from control rats or monocrotaline (MCT)-induced pulmonary hypertensive (MCT-PH) rats, and we examined the effects of the PDE10 inhibitor papaverine (Pap) and specific small interfering RNA (siRNA). In addition, papaverine was administrated to MCT-induced PH rats from day 21 to day 35 by continuous intravenous infusion to examine the in vivo effects of PDE10A inhibition. We found that PDE10A was predominantly present in the lung vasculature, and the mRNA, protein, and activity levels of PDE10A were all significantly increased in MCT PASMCs compared with control PASMCs. Papaverine and PDE10A siRNA induced an accumulation of intracellular cAMP, activated cAMP response element binding protein and attenuated PASMC proliferation. Intravenous infusion of papaverine in MCT-PH rats resulted in a 40%-50% attenuation of the effects on pulmonary hypertensive hemodynamic parameters and pulmonary vascular remodeling. The present study is the first to demonstrate a central role of PDE10A in progressive pulmonary vascular remodeling, and the results suggest a novel therapeutic approach for the treatment of PH.  相似文献   

10.
The levels of the cGMP in smooth muscle of the gut reflect continued synthesis by soluble guanylate cyclase (GC) and breakdown by phosphodiesterase 5 (PDE5). Soluble GC is a haem-containing, heterodimeric protein consisting alpha- and beta-subunits: each subunit has N-terminal regulatory domain and a C-terminal catalytic domain. The haem moiety acts as an intracellular receptor for nitric oxide (NO) and determines the ability of NO to activate the enzyme and generate cGMP. In the present study the mechanism by which protein kinases regulate soluble GC in gastric smooth muscle was examined. Sodium nitroprusside (SNP) acting as a NO donor stimulated soluble GC activity and increased cGMP levels. SNP induced soluble GC phosphorylation in a concentration-dependent fashion. SNP-induced soluble GC phosphorylation was abolished by the selective cGMP-dependent protein kinase (PKG) inhibitors, Rp-cGMPS and KT-5823. In contrast, SNP-stimulated soluble GC activity and cGMP levels were significantly enhanced by Rp-cGMPS and KT-5823. Phosphorylation and inhibition of soluble GC were PKG specific, as selective activator of cAMP-dependent protein kinase, Sp-5, 6-DCl-cBiMPS had no effect on SNP-induced soluble GC phosphorylation and activity. The ability of PKG to stimulate soluble GC phosphorylation was demonstrated in vitro by back phosphorylation technique. Addition of purified phosphatase 1 inhibited soluble GC phosphorylation in vitro, and inhibition was reversed by a high concentration (10 microM) of okadaic acid. In gastric smooth muscle cells, inhibition of phosphatase activity by okadaic acid increased soluble GC phosphorylation in a concentration-dependent fashion. The increase in soluble GC phosphorylation inhibited SNP-stimulated soluble GC activity and cGMP formation. The results implied the feedback inhibition of soluble GC activity by PKG-dependent phosphorylation impeded further formation of cGMP.  相似文献   

11.
There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min(-1)·kg(-1)) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.  相似文献   

12.
In the absence of detergent, approximately 80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; approximately 85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity approximately 100% and calmodulin-stimulated approximately 400-500%. Although 1% Lubrol readily solubilized these PDE activities, approximately 75% of the cAMP PDE activity (0.5 microM [3H]cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide. Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. After solubilization and purification by chromatography on cGMP-agarose, heparin-agarose, and Superose 6, the brain particulate cGMP-stimulated PDE cross-reacted with antibody raised against a cGMP-stimulated PDE purified from calf liver supernatant. The brain enzyme exhibited a slightly greater subunit Mr than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V8 protease produced several peptides of similar size, as well as at least two distinct fragments of approximately 27 kDa from the brain and approximately 23 kDa from the liver enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Broken cell preparations of WI-38 and SV40-transformed WI-38 (VA13) fibroblasts were used to compare the cyclic nucleotide phosphodiesterase activities of the two cell strains. The bulk of the cAMP or cGMP phosphodiesterase activity of WI-38 and VA13 homogenates was found in the 100,000 x g fibroblast supernatant fractions. WI-38 and VA13 soluble phosphodiesterase activities showed anomalous kinetic behavior with either cAMP or cGMP as the substrate. At low substrate concentrations, e.g., 0.1 muM, WI-38 supernatant fractions hydrolyzed cGMP much more rapidly than cAMP. At high substrate concentrations, e.g., 100muM, the same enzyme preparations degraded cAMP more than twice as fast as cGMP. In contrast, VA13 soluble phosphodiesterase activity catalyzed the hydrolysis of a wide range of cAMP and cGMP concentrations at similar rates. Phosphodiesterase activity in WI-38 supernatant fractions was generally more sensitive than that of the comparable VA13 enzyme activity to inhibition by MIX and papaverine. The cAMP phosphodiesterase activity of both WI-38 and VA13 supernatant preparations was decreased by cGMP in a concentration-dependent manner. cAMP was an effective inhibitor of cGMP hydrolysis by VA13 soluble phosphodiesterase activity. Yet, the cGMP phosphodiesterase activity of WI-38 supernatant fractions was only slightly reduced in the presence of cAMP. DEAE-cellulose chromatography of WI-38 and VA13 supernatant preparations revealed two major peaks of phosphodiesterase activity for each cell type. WI-38 peak I showed much greater activity with 1muM cGMP than with 1muM cAMP and appeared to be composed of two different phosphodiesterase activities. WI-38 peak Ia included phosphodiesterase activity which could be stimulated by boiled, dialyzed fibroblast homogenates while WI-38 peak Ib coincided with column fractions which contained most of the cyclic GMP hydrolytic activity. VA13 peak I phosphodiesterase activity was eluted from DEAE cellulose columns at the same ionic strength as WI-38 peak Ia and hydrolyzed these two substrates at nearly identical rates. This enzyme activity was also increased in the presence of boiled, dialyzed fibroblast preparations. Peak II phosphodiesterase activities from both WI-38 and VA13 fibroblasts were relatively specific for cAMP as the substrate. Phosphodiesterase activity with the properties of WI-38 peak Ib was not isolated from VA13 supernatant fractions. These results suggested that the dissimilar patterns of cAMP accumulation in WI-38 and VA13 cultures may be at least partially related to different phosphodiesterase activities in the normal and the transformed fibroblasts.  相似文献   

14.
Muscarinic antagonists, via muscarinic receptors increase the cAMP/cGMP levels at bovine tracheal smooth muscle (BTSM) through the inhibition of phosphodiesterases (PDEs), displaying a similar behavior of vinpocetine (a specific-PDE1 inhibitor). The presence of PDE1 hydrolyzing both cyclic nucleotides in BTSM strips was revealed. Moreover, a vinpocetine and muscarinic antagonists inhibited PDE1 located at plasma membranes (PM) fractions from BTSM showing such inhibition, an M2AChR pharmacological profile. Therefore, a novel Ca2+/CaM dependent and vinpocetine inhibited PDE1 was purified and characterized at PM fractions from BTSM. This PDE1 activity was removed from PM fractions using a hypotonic buffer and purified some 38 fold using two columns (Q-Sepharose and CaM-agarose). This PDE1 was stimulated by CaM and inhibited by vinpocetine showing two bands in PAGE-SDS (56, 58?kDa) being the 58?kDa identified as PDE1A by Western blotts. This PDE1A activity was assayed with [3H]cGMP and [3H]cAMP exhibiting a higher affinity as Km (μM) for cGMP than cAMP but being close values with Vmax cAMP/cGMP ratio of 1.5. The co-factor Mg2+ showed similar K(A) (mM) for both cyclic nucleotides. Vinpocetine showed similar inhibition concentration 50% (IC50 of 4.9 and 4.6?μM) for cAMP and cGMP, respectively. CaM stimulated the cyclic nucleotides hydrolysis by PDE1A exhibiting similar activation constant as K(CaM), in nM range. The original finding was the identification and purification of a vinpocetine and muscarinic antagonist-inhibited and CaM-activated PM-bound PDE1A, linked to M2AChR. A model of this novel signal transducing cascade for the regulation of cyclic nucleotides levels at BTSM is proposed.  相似文献   

15.
As cGMP hydrolyzing cyclic nucleotide phosphodiesterases (PDEs) have diverse regulatory and catalytic properties, the specific cGMP PDEs a cell expresses will determine the duration and intensity of a cGMP signal. This, in turn, results in different cellular responses between cell types and tissues. Therefore, identifying which cGMP PDEs are expressed in different tissues and cell types could increase our understanding of physiological and pathological processes. The brain is one area where large numbers of diverse cGMP PDEs are expressed in specific regions and cell types. A case in point is differential expression of cGMP PDEs in neuronal cells. For example, we have recently found that PDE5 is expressed in all Purkinje neurons while PDE1B is expressed in only a subset of these neurons. The expression of PDE2 has also been found to be selective for discrete populations of neurons. Another example of selective cGMP PDE expression is seen with cytokine-induced differentiation of monocytes to macrophages. We have recently discovered that monocyte differentiation with the cytokine macrophage colony-stimulating factor (M-CSF) causes an upregulation of PDE2 and a small increase in PDE1B while granulocyte-macrophage colony-stimulating factor (GM-CSF) causes a large increase in PDE1B but a decrease in PDE2. These same cytokines can influence the phenotype of microglial cells and are likely to affect their expression of cGMP PDEs. In this report, we present recent results from our laboratory and review earlier findings illustrating the concept of highly specific expression of cGMP PDEs and discuss how this may be important for understanding brain function and dysfunction.  相似文献   

16.
Phosphodiesterases (PDE) metabolize cyclic nucleotides limiting the effects of vasodilators such as prostacyclin and nitric oxide (NO). In this study, DNA microarray techniques were used to assess the impact of NO on expression of PDE genes in rat pulmonary arterial smooth muscle cells (rPASMC). Incubation of rPASMC with S-nitroso-l-glutathione (GSNO) increased expression of a PDE isoform that specifically metabolizes cAMP (PDE4B) in a dose- and time-dependent manner. GSNO increased PDE4B protein levels, and rolipram-inhibitable PDE activity was 2.3 +/- 1.0-fold greater in GSNO-treated rPASMC than in untreated cells. The soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one, and the cAMP-dependent protein kinase inhibitor, H89, prevented induction of PDE4B gene expression by GSNO, but the protein kinase G (PKG) inhibitors, Rp-8-pCPT-cGMPs and KT-5823, did not. Incubation of rPASMC with IL-1beta and tumor necrosis factor-alpha induced PDE4B gene expression, an effect that was inhibited by l-N(6)-(1-iminoethyl)lysine, an antagonist of NO synthase 2 (NOS2). The GSNO-induced increase in PDE4B mRNA levels was blocked by actinomycin D but augmented by cycloheximide. Infection of rPASMC with an adenovirus specifying a dominant negative cAMP response element binding protein (CREB) mutant inhibited the GSNO-induced increase of PDE4B gene expression. These results suggest that exposure of rPASMC to NO induces expression of PDE4B via a mechanism that requires cGMP synthesis by sGC but not PKG. The GSNO-induced increase of PDE4B gene expression is CREB dependent. These findings demonstrate that NO increases expression of a cAMP-specific PDE and provide evidence for a novel "cross talk" mechanism between cGMP and cAMP signaling pathways.  相似文献   

17.
The aim of our study was to investigate the expression and the activity of soluble guanylyl cyclase (GC) and phosphodiesterase (PDE) activities that regulate cGMP level in the striatum, hippocampus, and brain cortex in an animal model of PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We observed the increase of total activity and protein level of GC in striatum after MPTP injection. It was accompanied by an enhancement of both mRNA expression and protein level of GCbeta1 subunit. MPTP induces mRNA expression and elevates protein concentration of GCbeta1 in striatum up to 14 days after its injection, which in turn causes a marked enhancement of cGMP formation. Furthermore, the activation of GC occurs through change of maximal enzyme activity (V(max)). Simultaneously, no change in PDE activity has been detected in all investigated regions of the brain after MPTP. MPTP injection caused the elevation of GCbeta1 protein level in both the membrane and cytosol fractions being significantly higher in cytosol. Western blot analysis demonstrated about 45-67% decrease of tyrosine hydroxylase protein content in striatum. These data suggest that NO/cGMP signaling pathway may at least partially contribute to dopaminergic fiber degeneration in the striatum, the damage attributed to PD.  相似文献   

18.
In this study, we report the cloning of the rat cGMP-specific phosphodiesterase type 9 (PDE9A) and its localization in rat and mouse brain by non-radioactive in situ hybridization. Rat PDE9A was 97.6% identical to mouse PDE9A1 and showed 92.1% similarity on the amino acid level to the human homologue. PDE9A mRNA was widely distributed throughout the rat and mouse brain, with the highest expression observed in cerebellar Purkinje cells. Furthermore, strong staining was detected in areas such as cortical layer V, olfactory tubercle, caudate putamen and hippocampal pyramidal and granule cells. Comparison of PDE9A mRNA expression by double staining with the cellular markers NeuN and glial fibrillary acidic protein demonstrated that PDE9A expression was mainly detected in neurons and in a subpopulation of astrocytes. Using cGMP-immunocytochemistry, the localization of cGMP was investigated in the cerebellum in which the highest PDE9 expression was demonstrated. Strong cGMP immunoreactivity was detected in the molecular layer in the presence of the non-selective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). After treatment with soluble guanylyl cyclase activators the granular layer also showed cGMP staining, whereas no clear immunostaining was detected in Purkinje cells under all conditions investigated, which might be due to the presence of the IBMX-insensitive PDE9A in these cells. The present findings indicate that PDE9A is highly conserved between species and is widely distributed throughout the rodent brain. PDE9A is probably involved in maintenance of low cGMP levels in cells and might play an important role in a variety of brain functions involving cGMP-mediated signal transduction.  相似文献   

19.
Mammalian sperm motility, capacitation, and the acrosome reaction are regulated by signal transduction systems involving cAMP as a second messenger. Levels of cAMP are controlled by two key enzymes, adenylyl cyclase and phosphodiesterases (PDEs), the latter being involved in cAMP degradation. Calmodulin-dependent PDE (PDE1) and cAMP-specific PDE (PDE4) activities were previously identified in spermatozoa via the use of specific inhibitors. Here we report that human sperm PDEs are associated with the plasma membrane (50%-60%) as well as with the particulate fraction (30%-50%) and have more affinity for cAMP than cGMP. Immunocytochemical data indicated that PDE1A, a variant of PDE1, is localized on the equatorial segment of the sperm head as well as on the mid and principal pieces of the flagellum, and that PDE3A is found on the postacrosomal segment of the sperm head. Immunoblotting confirmed the presence of PDE1A and PDE3A isoforms in spermatozoa. Milrinone, a PDE3 inhibitor, increased intracellular levels of cAMP by about 15% but did not affect sperm functions, possibly because PDE3 represents only a small proportion of the sperm total PDE activity (10% and 25% in Triton X-100 soluble and particulate fractions, respectively). PDE1A activity in whole sperm extract or after partial purification by anion-exchange chromatography was not stimulated by calcium + calmodulin. Results obtained with electrophoresis in native conditions indicated that calmodulin is tightly bound to PDE1A. Incubation with EGTA + EDTA, trifluoperazine, or urea did not dissociate the PDE1A-calmodulin complex. These results suggest that PDE1A is permanently activated in human spermatozoa.  相似文献   

20.
The aim of our studies was to establish which enzymes constitute the "cGMP pathway" in rat and guinea pig peritoneal macrophages (PM). We found that in guinea pig PM synthesis of the nucleotide was significantly enhanced in response to activators of soluble guanylyl cyclase (sGC) and it was only slightly stimulated by specific activators of particulate guanylyl cyclases (pGC). In contrast, rat PM responded strongly to atrial natriuretic peptide (ANP), the activator of pGC type A. The rat cells synthesized about three-fold more cGMP than an equal number of the guinea pig cells. The activity of phosphodiesterases (PDE) hydrolyzing cGMP was apparently regulated by cGMP itself in PM of both species and again it was higher in the rat cells than in those isolated from guinea pig. However, guinea pig PM revealed an activity of Ca(2+)/calmodulin-dependent PDE1, which was absent in the rat cells. Using Western blotting analysis we were unable to detect the presence of cGMP-dependent protein kinase 1 (PKG1) in PM isolated from either species. In summary, our findings indicate that particulate GC-A is the main active form of GC in the rat PM, while in guinea pig macrophages the sGC activity dominates. Since the profiles of the PDE activities in rat and guinea pig PM are also different, we conclude that the mechanisms regulating cGMP metabolism in PM are species-specific. Moreover, our results suggest that targets for cGMP other than PKG1 should be present in PM of both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号