首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
KCC1 cDNA was cloned in dog erythroblasts that had differentiated from peripheral mononuclear cells. The size of the cDNA was 3,258 bp, the same as in pigs, but 3 bp longer than in humans and rodents. The dog KCC1 cDNA encodes for 1,086 amino acid residues with a calculated molecular mass of 120 kDa. The 560 bp cDNA fragment from position 679 to 1,238 in the full length cDNA from the dog erythroblasts was 100% identical to that in the kidney. Hydropathy analysis showed that the structure of dog KCC1 was similar to in other species; 12 trans membrane domains, four glycosylation sites in loop 5, and 17 consensus phosphorylation sites in the cytosol. However, there were variations in dog KCC1 compared to in other species; there was one CK2 phosphorylation site that was found only in dog KCC1. There were also substitutions of amino acids that affect pH sensitivity (His) and change acidic/basic residues or charged residues. In HEK 293 cells transfected with dog KCC1 cDNA (HEK-dKCC1), the Rb influx, which was ouabain-resistant, Cl-dependent, N-ethyl maleimide (NEM)- stimulative and Na-independent, was measured as for K-Cl cotransport, and the influx was found to be increased approximately 3 fold in HEK-dKCC1 compared to in the control. This ouabain-resistant Cl-dependent Rb influx was also volume-sensitive in hyposmotic medium, and the volume-sensitive component was inhibited by furosemide. Thus, the KCC1 cDNA cloned in dog erythroblasts encodes a volume-sensitive K-Cl cotransporter.  相似文献   

3.
Several members of the cation-chloride cotransporter (solute carrier family 12, SLC12) gene family are expressed within the central nervous system, with one family member, the K+-Cl- cotransporter KCC2, exclusive to neurons. These transporters are best known for their roles in cell volume regulation and epithelial salt transport, but are increasingly receiving attention in neuroscience. In particular, intracellular chloride activity and hence the neuronal response to GABA and glycine appears to be determined by a balance between chloride efflux and influx through KCC2 and the Na+-K+-2Cl- cotransporter NKCC1, respectively. This relationship has important implications for neuronal development, sensory perception, neuronal excitability, and the response to neuronal injury. Finally, the association between loss of function in the K+-Cl- cotransporter KCC3, with a severe peripheral neuropathy associated with agenesis of the corpus callosum, has revealed an unexpected role for K+-Cl- cotransport in the development and/or maintenance of both the central and peripheral nervous systems.  相似文献   

4.
Little is known regarding the quaternary structure of cation-Cl- cotransporters (CCCs) except that the Na+-dependent CCCs can exist as homooligomeric units. Given that each of the CCCs exhibits unique functional properties and that several of these carriers coexist in various cell types, it would be of interest to determine whether the four K+-Cl- cotransporter (KCC) isoforms and their splice variants can also assemble into such units and, more importantly, whether they can form heterooligomers by interacting with each other or with the secretory Na+-K+-Cl- cotransporter (NKCC1). In the present work, we have addressed these questions by conducting two groups of analyses: 1) yeast two-hybrid and pull-down assays in which CCC-derived protein segments were used as both bait and prey and 2) coimmunoprecipitation and functional studies of intact CCCs coexpressed in Xenopus laevis oocytes. Through a combination of such analyses, we have found that KCC2 and KCC4 could adopt various oligomeric states (in the form of KCC2-KCC2, KCC4-KCC4, KCC2-KCC4, and even KCC4-NKCC1 complexes), that their carboxyl termini were probably involved in carrier assembly, and that the KCC4-NKCC1 oligomers, more specifically, could deploy unique functional features. Through additional coimmunoprecipitation studies, we have also found that KCC1 and KCC3 had the potential of assembling into various types of CCC-CCC oligomers as well, although the interactions uncovered were not characterized as extensively, and the protein segments involved were not identified in yeast two-hybrid assays. Taken together, these findings could change our views on how CCCs operate or are regulated in animal cells by suggesting, in particular, that cation-Cl- cotransport achieves higher levels of functional diversity than foreseen.  相似文献   

5.
Effect of peroxynitrite on passive K+ transport in human red blood cells.   总被引:1,自引:0,他引:1  
Peroxynitrite is generated in vivo by the reaction between nitric oxide, from endothelial and other cells, and the superoxide anion. It is therefore pertinent to examine its effects on the membrane permeability of red blood cells. Treatment of human red blood cells with peroxynitrite (nominally 1 mM) markedly stimulated passive K+ permeability. The main effect was on a Cl(-)-independent K+ pathway, which remains unidentified. Although K+-Cl- cotransport (KCC) was stimulated, this was dependent on saline composition, being inhibited by physiological levels of glucose (IC50 4 mM), and also by sucrose and MOPS. Effects on the Cl(-)-independent K+ pathway were less dependent on saline composition, and were not inhibited by amiloride, ethylisopropylamiloride, dimethylamiloride or gadolinium. Na+-K+-2Cl- cotransporter was inhibited whilst there was little effect on the Gardos channel (Ca2+-activated K+ channel). Peroxynitrite was markedly more effective in oxygenated cells than deoxygenated ones. Treatment with peroxynitrite per se did not affect initial cell volume. Anisotonic swelling modestly increased the Cl(-)-independent K+ influx, but did not affect peroxynitrite-stimulated KCC. Decreasing extracellular pH from 7.4 to 7.2 or 7.0 increased KCC stimulation, whilst the Cl(-)-independent component of K+ transport was lowest at pH 7.2. Finally, protein phosphatase inhibition with calyculin A (100 nM) inhibited KCC, implying that, as with other KCC stimuli, peroxynitrite acts via decreased protein phosphorylation; pre-treatment with calyculin A also inhibited the Cl(-)-independent component of K+ transport. These findings are relevant to the actions of peroxynitrite in vivo.  相似文献   

6.
K-Cl cotransporter expression in the human kidney   总被引:2,自引:0,他引:2  
The K-Cl cotransporter protein KCC1 is a membrane transportprotein that mediates the coupled, electroneutral transport of K and Clacross plasma membranes. The precise cell type(s) in the kidney thatexpress the K-Cl cotransporter have remained unknown. The aim of thepresent investigation was to define the distribution of KCC1 mRNA inthe human kidney. We used in situ hybridization with a nonradioactivedigoxigenin-labeled riboprobe. We identified abundant KCC1 mRNAexpression in the epithelial cells throughout the distal and proximalrenal tubular epithelium. The transporter was also expressed inglomerular mesangial cells and endothelial cells of the renal vessels.These findings suggest that the K-Cl cotransporter may have animportant role in transepithelial K and Cl reabsorption.

  相似文献   

7.
In red cells from normal individuals (HbA cells), the K+-Cl- cotransporter (KCC) is inactivated by low O2 tension whilst in those from sickle cell patients (HbS cells), it remains fully active. Changes in free intracellular [Mg2+] have been proposed as a mechanism. In HbA cells, KCC activity was stimulated by Mg2+ depletion and inhibited by Mg2+ loading but the effect of O2 was independent of Mg2+. At all [Mg2+]is, the transporter was stimulated in oxygenated cells, minimally active in deoxygenated ones. By contrast, the stimulatory effects of O2 was abolished by inhibitors of protein (de)phosphorylation. HbS cells had elevated KCC activity, which was of similar magnitude in oxygenated and deoxygenated cells, regardless of Mg2+ clamping. In deoxygenated cells, the antisickling agent dimethyl adipimidate inhibited sickling, Psickle and KCC. Results indicate a role for protein phosphorylation in O2 dependence of KCC, with different activities of the relevant enzymes in HbA and HbS cells, probably dependent on Hb.  相似文献   

8.
We isolated and characterized a novelK-Cl cotransporter, KCC3, from human placenta. The deduced proteincontains 1,150 amino acids. KCC3 shares 75-76% identity at theamino acid level with human, pig, rat, and rabbit KCC1 and 67%identity with rat KCC2. KCC3 is 40 and 33% identical to twoCaenorhabditis elegans K-Cl cotransporters and ~20%identical to other members of the cation-chloride cotransporter family(CCC), two Na-K-Cl cotransporters (NKCC1, NKCC2), and the Na-Clcotransporter (NCC). Hydropathy analysis indicates a typical KCCtopology with 12 transmembrane domains, a large extracellular loopbetween transmembrane domains 5 and 6 (unique to KCCs), and largeNH2 and COOH termini. KCC3 is predominantly expressed inkidney, heart, and brain, and is also expressed in skeletal muscle,placenta, lung, liver, and pancreas. KCC3 was localized to chromosome15. KCC3 transiently expressed in human embryonic kidney (HEK)-293cells fulfilled three criteria for increased expression of K-Clcotransport: stimulation of cotransport by swelling, treatment withN-ethylmaleimide, or treatment with staurosporine.

  相似文献   

9.
The expression of K+-Cl- cotransporters (KCC) was examined in pancreatic islet cells. mRNA for KCC1, KCC3a, KCC3b and KCC4 were identified by RT-PCR in islets isolated from rat pancreas. In immunocytochemical studies, an antibody specific for KCC1 and KCC4 revealed the expression of KCC protein in alpha-cells, but not pancreatic beta-cells nor delta-cells. A second antibody which does not discriminate among KCC isoforms identified KCC expression in both alpha-cell and beta-cells. Exposure of isolated alpha-cells to hypotonic solutions caused cell swelling was followed by a regulatory volume decrease (RVD). The RVD was blocked by 10 microM [dihydroindenyl-oxy] alkanoic acid (DIOA; a KCC inhibitor). DIOA was without effect on the RVD in beta-cells. NEM (0.2 mM), a KCC activator, caused a significant decrease of alpha-cell volume, which was completely inhibited by DIOA. By contrast, NEM had no effects on beta-cell volume. In conclusion, KCCs are expressed in pancreatic alpha-cells and beta-cells. However, they make a significant contribution to volume homeostasis only in alpha-cells.  相似文献   

10.
Pathophysiological activity and various kinds of traumatic insults are known to have deleterious long-term effects on neuronal Cl- regulation, which can lead to a suppression of fast postsynaptic GABAergic responses. Brain-derived neurotrophic factor (BDNF) increases neuronal excitability through a conjunction of mechanisms that include regulation of the efficacy of GABAergic transmission. Here, we show that exposure of rat hippocampal slice cultures and acute slices to exogenous BDNF or neurotrophin-4 produces a TrkB-mediated fall in the neuron-specific K+-Cl- cotransporter KCC2 mRNA and protein, as well as a consequent impairment in neuronal Cl- extrusion capacity. After kindling-induced seizures in vivo, the expression of KCC2 is down-regulated in the mouse hippocampus with a spatiotemporal profile complementary to the up-regulation of TrkB and BDNF. The present data demonstrate a novel mechanism whereby BDNF/TrkB signaling suppresses chloride-dependent fast GABAergic inhibition, which most likely contributes to the well-known role of TrkB-activated signaling cascades in the induction and establishment of epileptic activity.  相似文献   

11.
 血管内皮生长因子受体 Flt- 1胞外区具有 7个免疫球蛋白样的袢 (Ig- like loop) ,氨基端 3个loop负责与其配体 VEGF的结合 .为了寻求能与配体结合的更小的 Flt- 1片段 ,在对 Flt- 1胞外前3个 loop氨基酸组成和晶体结构分析的基础上 ,应用酵母双杂交系统对 Flt- 1的配体结合域进行筛选 .利用 PCR技术 ,从人胎盘 c DNA文库扩增出 4个截短的 Flt- 1 c DNA,分别含胞外第 2 ,1 - 2 ,2 - 3和 1 - 3个 loop,构建酵母双杂交系统融合表达质粒 ,并将 p GBT9/h VEGF165与 p GAD42 4 /Flt- 1 s两两配对转化酵母菌 SFY52 6,采用滤纸法和液体培养定量检测法对阳性克隆进行β-半乳糖苷酶活性分析 .结果显示 ,Flt- 1胞外 loop 2 - 3与 loop 1 - 3的配体结合能力相差不大 ,loop 1 - 2的结合力较弱 ,单独第 2个 loop无配体结合能力 .  相似文献   

12.
13.
The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-beta1 mRNA, enhanced TGF-beta1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-beta1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.  相似文献   

14.
The K–Cl cotransporter (KCC) functions in maintaining chloride and volume homeostasis in a variety of cells. In the process of cloning the mouse KCC3 cDNA, we came across a cloning mutation (E289G) that rendered the cotransporter inactive in functional assays in Xenopus laevis oocytes. Through biochemical studies, we demonstrate that the mutant E289G cotransporter is glycosylation-deficient, does not move beyond the endoplasmic reticulum or the early Golgi, and thus fails to reach the plasma membrane. We establish through co-immunoprecipitation experiments that both wild-type and mutant KCC3 with KCC2 results in the formation of hetero-dimers. We further demonstrate that formation of these hetero-dimers prevents the proper trafficking of the cotransporter to the plasma membrane, resulting in a significant decrease in cotransporter function. This effect is due to interaction between the K–Cl cotransporter isoforms, as this was not observed when KCC3-E289G was co-expressed with NKCC1. Our studies also reveal that the glutamic acid residue is essential to K–Cl cotransporter function, as the corresponding mutation in KCC2 also leads to an absence of function. Interestingly, mutation of this conserved glutamic acid residue in the Na+-dependent cation-chloride cotransporters had no effect on NKCC1 function in isosmotic conditions, but diminished cotransporter activity under hypertonicity. Together, our data show that the glutamic acid residue (E289) is essential for proper trafficking and function of KCCs and that expression of a non-functional but full-length K–Cl cotransporter might results in dominant-negative effects on other K–Cl cotransporters.  相似文献   

15.
Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.  相似文献   

16.
We have stably expressed the cDNA encoding the 165 amino-acid long form of human vascular endothelial growth factor (VEGF) in BHK-21 cells. VEGF was partially purified from the conditioned medium of transfected cells using heparin-sepharose affinity chromatography. The partially purified VEGF was mitogenic for various types of endothelial cells and inhibited the binding of pure [125I]VEGF to its receptors. Western blot analysis, using anti-VEGF antibodies, revealed a 47 kDa VEGF homodimer in the partially purified VEGF fraction. Preincubation of the transfected cells with the N-glycosylation inhibitor tunicamycin resulted in the conversion of the 47 kDa VEGF homodimer into a smaller, deglycosylated form of 42 kDa. Partially purified preparations of the deglycosylated VEGF displayed a mitogenic activity that was similar to that of the glycosylated form and efficiently inhibited the binding of native [125I]VEGF to the VEGF receptors of bovine aortic arch derived endothelial cells.  相似文献   

17.
Although K-Cl cotransporter (KCC1) mRNA is expressed in manytissues, K-Cl cotransport activity has been measured in few cell types,and detection of endogenous KCC1 polypeptide has not yet been reported.We have cloned the mouse erythroid KCC1 (mKCC1) cDNA and its flankinggenomic regions and mapped the mKCC1 gene to chromosome 8. Threeanti-peptide antibodies raised against recombinant mKCC1 function asimmunoblot and immunoprecipitation reagents. The tissue distributionsof mKCC1 mRNA and protein are widespread, and mKCC1 RNA isconstitutively expressed during erythroid differentiation of ES cells.KCC1 polypeptide or related antigen is present in erythrocytes ofmultiple species in which K-Cl cotransport activity has beendocumented. Erythroid KCC1 polypeptide abundance is elevated inproportion to reticulocyte counts in density-fractionated cells, inbleeding-induced reticulocytosis, in mouse models of sickle celldisease and thalassemia, and in the corresponding human disorders.mKCC1-mediated uptake of 86Rb intoXenopus oocytes requires extracellularCl, is blocked by thediureticR(+)-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-indenyl-5-yl-)oxy]acetic acid, and exhibits an erythroid pattern of acute regulation, with activation by hypotonic swelling,N-ethylmaleimide, and staurosporine and inhibition by calyculin and okadaic acid. These reagents and findings will expedite studies of KCC1 structure-function relationships and of the pathobiology of KCC1-mediated K-Cl cotransport.

  相似文献   

18.
19.
The molecular basis of sickle cell disease (SCD) is well known but the pathophysiology is poorly understood. It remains intractable to therapy. Hyperactivity of several membrane transport systems, including the K+-Cl- cotransporter (termed KCC), cause HbS-containing red cells (termed HbS cells) to dehydrate and sickle, leading to the development of sickle cell crises (SCCs). Contrary to normal red cells (HbA cells), KCC in HbS cells is active at low O2 tensions (PO2s), remaining responsive to low pH or urea. Since these stimuli are usually encountered in hypoxic regions, the abnormal O2 dependence increases the contribution of KCC to dehydration, and hence development of SCCs. These differences with HbA cells may be due to the younger population of cells or to polymerization of HbS. We used 86Rb+ as a K+ congener to investigate the activity of KCC at different PO2s, and density gradient separation to investigate different red cell fractions. We found no correlation of O2 dependence with cell fractions. We also used the substituted benzaldehyde 12C79 to increase the O2 affinity of HbS and found that its effect on HbS O2 saturation and cell sickling correlated with that on both Cl--independent and Cl--dependent K+ transport, implying that, at low PO2s, KCC activity correlated with HbS polymerization. The importance of these results to understanding the pathophysiology of SCD, and for the design of chemotherapeutic agents to ameliorate or prevent SCC, is discussed.  相似文献   

20.
Fibroblastic proliferation accompanies many angiogenesis-related retinal and systemic diseases. Since connective tissue growth factor (CTGF) is a potent mitogen for fibrosis, extracellular matrix production, and angiogenesis, we have studied the effects and mechanism by which vascular endothelial growth factor (VEGF) regulates CTGF gene expression in retinal capillary cells. In our study, VEGF increased CTGF mRNA levels in a time- and concentration-dependent manner in bovine retinal endothelial cells and pericytes, without the need of new protein synthesis and without altering mRNA stability. VEGF activated the tyrosine receptor phosphorylation of KDR and Flt1 and increased the binding of phosphatidylinositol 3-kinase (PI3-kinase) p85 subunit to KDR and Flt1, both of which could mediate CTGF gene induction. VEGF-induced CTGF expression was mediated primarily by PI3-kinase activation, whereas PKC and ERK pathways made only minimal contributions. Furthermore, overexpression of constitutive active Akt was sufficient to induce CTGF gene expression, and inhibition of Akt activation by overexpressing dominant negative mutant of Akt abolished the VEGF-induced CTGF expression. These data suggest that VEGF can increase CTGF gene expression in bovine retinal capillary cells via KDR or Flt receptors and the activation of PI3-kinase-Akt pathway independently of PKC or Ras-ERK pathway, possibly inducing the fibrosis observed in retinal neovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号