首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of P/P- and P/E-site tRNA(Phe) binding on the 16S rRNA structure in the Escherichia coli 70S ribosome were investigated using UV cross-linking. The identity and frequency of 16S rRNA intramolecular cross-links were determined in the presence of deacyl-tRNA(Phe) or N-acetyl-Phe-tRNA(Phe) using poly(U) or an mRNA analogue containing a single Phe codon. For N-acetyl-Phe-tRNA(Phe) with either poly(U) or the mRNA analogue, the frequency of an intramolecular cross-link C967 x C1400 in the 16S rRNA was decreased in proportion to the binding stoichiometry of the tRNA. A proportional effect was true also for deacyl-tRNA(Phe) with poly(U), but the decrease in the C967 x C1400 frequency was less than the tRNA binding stoichiometry with the mRNA analogue. The inhibition of the C967 x C1400 cross-link was similar in buffers with, or without, polyamines. The exclusive participation of C967 with C1400 in the cross-link was confirmed by RNA sequencing. One intermolecular cross-link, 16S rRNA (C1400) to tRNA(Phe)(U33), was made with either poly(U) or the mRNA analogue. These results indicate a limited structural change in the small subunit around C967 and C1400 during tRNA P-site binding sensitive to the type of mRNA that is used. The absence of the C967 x C1400 cross-link in 70S ribosome complexes with tRNA is consistent with the 30S and 70S crystal structures, which contain tRNA or tRNA analogues; the occurrence of the cross-link indicates an alternative arrangement in this region in empty ribosomes.  相似文献   

2.
3.
A photo-reactive diazirine derivative was attached to the 2-thiocytidine residue at position 32 of tRNA(Arg)I from Escherichia coli. This modified tRNA was bound under suitable conditions to the A, P or E site of E.coli ribosomes. After photo-activation of the diazirine label, the sites of cross-linking to 16S rRNA were identified by our standard procedures. Each of the three tRNA binding sites showed a characteristic pattern of cross-linking. From tRNA at the A site, a major cross-link was observed to position 1378 of the 16S RNA, and a minor one to position 936. From the P site, there were major cross-links to positions 693 and to 957 and/or 966, as well as a minor cross-link to position 1338. The E site bound tRNA showed major cross-links to position 693 (identical to that from the P site) and to positions 1376/1378 (similar, but not identical, to the cross-link observed from the A site). Immunological analysis of the concomitantly cross-linked ribosomal proteins indicated that S7 was the major target of cross-linking from all three tRNA sites, with S11 as a minor product. The results are discussed in terms of the overall topography of the decoding region of the 30S ribosomal subunit.  相似文献   

4.
Intra-RNA cross-links were introduced into E. coli 30S ribosomal subunits by mild ultraviolet irradiation. The subunits were partially digested with cobra venom nuclease, followed in some cases by a second partial digestion with ribonuclease H in the presence of the hexanucleotide d-(CTTCCC). The cross-linked RNA complexes were separated by two-dimensional gel electrophoresis and the sites of cross-linking analysed by our published procedures. Tertiary structural cross-links in the 16S RNA were identified between positions 31 and 48, between oligonucleotides 1090-1094 and 1161-1164, and between oligonucleotides 1125-1127 and 1280-1281. The first of these imposes a rigid constraint on the relative orientations of helices 3 and 4 of the 16S secondary structure. A further tertiary cross-link (which could not be precisely localised) was found between regions 1-72 and 1020-1095, and secondary structural cross-links were identified between positions 497 and 545-548, and positions 1238-1240 and 1298.  相似文献   

5.
The naturally occurring nucleotide 3-(3-amino-3-carboxy-propyl)uridine (acp3U) at position 47 of tRNA(Phe) from Escherichia coli was modified with a diazirine derivative and bound to ribosomes in the presence of suitable mRNA analogues under conditions specific for the ribosomal A, P or E sites. After photo-activation at 350 nm the cross-links to ribosomal proteins and RNA were identified by our standard procedures. In the 30S subunit protein S19 (and weakly S9 and S13) was the target of cross-linking from tRNA at the A site, S7, S9 and S13 from the P site and S7 from the E site. Similarly, in the 50S subunit L16 and L27 were cross-linked from the A site, L1, L5, L16, L27 and L33 from the P site and L1 and L33 from the E site. Corresponding cross-links to rRNA were localized by RNase H digestion to the following areas: in 16S rRNA between positions 687 and 727 from the P and E sites, positions 1318 and 1350 (P site) and 1350 and 1387 (E site); in the 23S rRNA between positions 865 and 910 from the A site, 1845 and 1892 (P site), 1892 and 1945 (A site), 2282 and 2358 (P site), 2242 and 2461 (P and E sites), 2461 and 2488 (A site), 2488 and 2539 (all three sites) and 2572 and 2603 (A and P sites). In most (but not all) cases, more precise localizations of the cross-link sites could be made by primer extension analysis.  相似文献   

6.
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.  相似文献   

7.
Tetracycline blocks stable binding of aminoacyl-tRNA to the bacterial ribosomal A-site. Various tetracycline binding sites have been identified in crystals of the 30S ribosomal small subunit of Thermus thermophilus. Here we describe a direct photo- affinity modification of the ribosomal small subunits of Escherichia coli with 7-[3H]-tetracycline. To select for specific interactions, an excess of the 30S subunits over tetracycline has been used. Primer extension analysis of the 16S rRNA revealed two sites of the modifications: C936 and C948. Considering available data on tetracycline interactions with the prokaryotic 30S subunits, including the presented data (E.coli), X-ray data (T.thermophilus) and genetic data (Helicobacter pylori, E.coli), a second high affinity tetracycline binding site is proposed within the 3′-major domain of the 16S rRNA, in addition to the A-site related tetracycline binding site.  相似文献   

8.
The Bacillus stearothermophilus ribosomal protein S15 (BS15) binds both a three-helix junction in the central domain of 16 S ribosomal RNA and its cognate mRNA. Native gel mobility-shift assays show that BS15 interacts specifically and with high affinity to the 5'-untranslated region (5'-UTR) of this cognate mRNA with an apparent dissociation constant of 3(+/-0.3) nM. In order to localize the structural elements that are essential for BS15 recognition, a series of deletion mutants of the full cognate mRNA were prepared and tested in the same gel-shift assay. The minimal binding site for BS15 is a 50 nucleotide RNA showing a close secondary structure resemblance to the BS15 binding region from 16 S rRNA. There are two major structural motifs that must be maintained for high-affinity binding. The first being a purine-rich three-helix junction, and the second being an internal loop. The sequence identity of the internal loops differs greatly between the BS15 mRNA and rRNA sites, and this difference is correlated to discrimination between wild-type BS15 and a BS15(H45R) mutant. The association and dissociation kinetics measured for the 5'-UTR-BS15 interaction are quite slow, but are typical for a ribosomal protein-RNA interaction. The BS15 mRNA and 16 S rRNA binding sites share a common secondary structure yet have little sequence identity. The mRNA and rRNA may in fact present similar if not identical structural elements that confer BS15 recognition.  相似文献   

9.
mRNA analogues containing 4-thiouridine residues at selected sites were used to extend our analysis of photo-induced cross-links between mRNA and 16S RNA to cover the entire downstream range between positions +1 and +16 on the mRNA (position +1 is the 5'-base of the P-site codon). No tRNA-dependent cross-links were observed from positions +1, +2, +3 or +5. Position +4 on the mRNA was cross-linked in a tRNA-dependent manner to 16S RNA at a site between nucleotides ca 1402-1415 (most probably to the modified residue 1402), and this was absolutely specific for the +4 position. Similarly, the previously observed cross-link to nucleotide 1052 was absolutely specific for the +6 position. The previously observed cross-links from +7 to nucleotide 1395 and from +11 to 532 were however seen to a lesser extent with certain types of mRNA sequence from neighbouring positions (+6 to +10, and +10 to +13, respectively); no tRNA-dependent cross-links to other sites on 16S RNA were found from these positions, and no cross-linking was seen from positions +14 to +16. In each case the effect of a second cognate tRNA (at the ribosomal A-site) on the level of cross-linking was studied, and the specificity of each cross-link was confirmed by translocation experiments with elongation factor G, using appropriate mRNA analogues.  相似文献   

10.
11.
"In vivo" cross-links were introduced into ribosomal RNA by direct ultraviolet irradiation of intact Escherichia coli cells, during growth in a 32P-labelled medium. Ribosomes were isolated from the irradiated cultures, dissociated into subunits and subjected to partial digestion with cobra venom nuclease. The intra-RNA cross-linked fragments were separated by two-dimensional gel electrophoresis and the sites of cross-linking determined, using our published methodology. A comparison with the data previously obtained by this procedure, after irradiation of isolated 30 S and 50 S subunits, showed that in the case of the 50 S subunit nine out of the ten previous cross-links in the 23 S RNA could be identified in the "in vivo" experiments, and correspondingly in the 30 S subunit five out of the six previous cross-links in the 16 S RNA were identified. Some new cross-links were found, as well as two cross-links in the 16 S RNA, which had hitherto only been observed after partial digestion of irradiated 30 S subunits with ribonuclease T1. The relevance of these data to the tertiary folding of the rRNA in situ is discussed, with particular reference to the work of other authors, in which "naked" RNA was used as the substrate for cross-linking and model-building studies.  相似文献   

12.
A photoreactive analogue of spermine, N1-azidobenzamidino (ABA)-spermine, was covalently attached after irradiation to Escherichia coli 30S ribosomal subunits or naked 16S rRNA. By means of RNase H digestion and primer extension, the cross-linking sites of ABA-spermine in naked 16S rRNA were characterised and compared with those identified in 30S subunits. The 5′ domain, the internal and terminal loops of helix H24, as well as the upper part of helix H44 in naked 16S rRNA, were found to be preferable binding sites for polyamines. Association of 16S rRNA with ribosomal proteins facilitated its interaction with photoprobe, except for 530 stem–loop nt, whose modification by ABA-spermine was abolished. Association of 30S with 50S subunits, poly(U) and AcPhe-tRNA (complex C) further altered the susceptibility of ABA-spermine cross-linking to 16S rRNA. Complex C, modified in its 30S subunit by ABA-spermine, reacted with puromycin similarly to non-photolabelled complex. On the contrary, poly(U)-programmed 70S ribosomes reconstituted from photolabelled 30S subunits and untreated 50S subunits bound AcPhe-tRNA more efficiently than untreated ribosomes, but were less able to recognise and reject near cognate aminoacyl-tRNA. The above can be interpreted in terms of conformational changes in 16S rRNA, induced by the incorporation of ABA-spermine.  相似文献   

13.
Tet(o) is an elongation factor-like protein found in clinical isolates of Campylobacter jejuni that confers resistance to the protein-synthesis inhibitor tetracycline. Tet(o) interacts with the 70S ribosome and promotes the release of bound tetracycline, however, as shown here, it does not form the same functional interaction with the 30S subunit. Chemical probing demonstrates that Tet(o) changes the reactivity of the 16S rRNA to dimethyl sulphate (DMS). These changes cluster within the decoding site, where C1214 is protected and A1408 is enhanced to DMS reactivity. C1214 is close to, but does not overlap, the primary tetracycline-binding site, whereas A1408 is in a region distinct from the Tet(o) binding site visualized by cryo-EM, indicating that Tet(o) induces long-range rearrangements that may mediate tetracycline resistance. Tetracycline enhances C1054 to DMS modification but this enhancement is inhibited in the presence of Tet(o) unlike the tetracycline-dependent protection of A892 which is unaffected by Tet(o). C1054 is part of the primary binding site of tetracycline and A892 is part of the secondary binding site. Therefore, the results for the first time demonstrate that the primary tetracycline binding site is correlated with tetracycline's inhibitory effect on protein synthesis.  相似文献   

14.
The RNA-RNA cross-linking reagent N-acetyl-N'-(p-glyoxylyl-benzoyl)cystamine, which reacts via its glyoxal residue with guanines not involved in G X C base pairs, has been used to introduce reversible RNA-RNA cross-links into Escherichia coli 16S rRNA. A two-dimensional gel method has been devised for the separation of the cross-linked oligonucleotides, and the precise location of guanines involved in four of these cross-links has been determined by sequencing the oligonucleotides. One cross-link involves guanosines 1315 and 1360 situated in two hairpin end loops of domain III. The other cross-links involves pairs of guanosine situated within the same hairpin end loops.  相似文献   

15.
As part of a programme to investigate the path of the nascent peptide through the large ribosomal subunit, peptides of different lengths (up to 30 amino acids), corresponding to the signal peptide sequence and N-terminal region of the Escherichia coli ompA protein, were synthesized in situ on E.coli ribosomes. The peptides each carried a diazirine moiety attached to their N-terminus which, after peptide synthesis, was photoactivated so as to induce cross-links to the 23S rRNA. The results showed that, with increasing length, the peptides became progressively cross-linked to sites in Domains V, II, III and I of the 23S rRNA, in a similar manner to that previously observed with a family of peptides derived from the tetracycline resistance gene. However, the cross-links to Domain III appeared at a shorter peptide length (12 aa) in the case of the ompA sequence, and an additional cross-link in Domain II (localized to nt 780-835) was also observed from this peptide. As with the tetracycline resistance sequence, peptides of all lengths were still able to form cross-links from their N-termini to the peptidyl transferase centre in Domain V. A further set of peptides (30 or 50 aa long), derived from mutants of the bacteriophage T4 gene 60 sequence, did not show the cross-links to Domain III, but their N-termini were nevertheless cross-linked to Domain I and to the sites in Domains II and V. The ability of relatively long peptides to fold back towards the peptidyl transferase centre thus appears to be a general phenomenon.  相似文献   

16.
Psoralen cross-linking was used to produce intramolecular cross-links in the Escherichia coli 16 S ribosomal RNA in the inactive and active forms of the 30 S subunit. A number of psoralen cross-links were made in the inactive form that were not made in the active form. The most frequent of these cross-links was sequenced by a series of techniques and identified as C-924 to U-1532. In this region, a three-base complementary, (921-923).(1532-1534), forms a site where psoralen can stack and produce a cross-link between C-924 and U-1532. When psoralen monoadducts were placed on inactive subunits and the conformation was switched to the active form before cross-linking, a new cross-link involving U-1393 was detected. U-1393 is part of the complementarity, (923-925).(1391-1393), that has previously been proposed as being an element of the functional secondary structure on the basis of sequence comparison. The complementarity between (921-923).(1532-1534) occurs in most nonmitochondrial small subunit RNAs; however, there are several counter examples in which it does not occur. This suggests that this alternate secondary structure interaction is not necessary for the function of the 30 S subunit.  相似文献   

17.
We have carried out an extensive protein-protein cross-linking study on the 50S ribosomal subunit of Escherichia coli using four different cross-linking reagents of varying length and specificity. For the unambiguous identification of the members of the cross-linked protein complexes, immunoblotting techniques using antisera specific for each individual ribosomal protein have been used, and for each cross-link, the cross-linking yield has been determined. With the smallest cross-linking reagent diepoxybutane (4 A), four cross-links have been identified, namely, L3-L19, L10-L11, L13-L21, and L14-L19. With the sulfhydryl-specific cross-linking reagent o-phenylenedimaleimide (5.2 A) and p-phenylenedimaleimide (12 A), the cross-links L2-L9, L3-L13, L3-L19, L9-L28, L13-L20, L14-L19, L16-L27, L17-L32, and L20-L21 were formed; in addition, the cross-link L23-L29 was exclusively found with the shorter o-phenylenedimaleimide. The cross-links obtained with dithiobis(succinimidyl propionate) (12 A) were L1-L33, L2-L9, L2-L9-L28, L3-L19, L9-L28, L13-L21, L14-L19, L16-L27, L17-L32, L19-L25, L20-L21, and L23-L34. The good agreement of the cross-links obtained with the different cross-linking reagents used in this study demonstrates the reliability of our cross-linking approach. Incorporation of our cross-linking results into the three-dimensional model of the 50S ribosomal subunit derived from immunoelectron microscopy yields the locations for 29 of the 33 proteins within the larger ribosomal subunit.  相似文献   

18.
A range of antibiotic inhibitors that act within the peptidyl transferase center of the ribosome were examined for their capacity to perturb the relative positioning of the 3' end of P/P'-site-bound tRNA and the Escherichia coli ribosome. The 3'-terminal adenosines of deacylated tRNA and N-Ac-Phe-tRNA were derivatized at the 2 position with an azido group and the tRNAs were cross-linked to the ribosome on irradiation with ultraviolet light at 365 nm. The cross-links were localized on the rRNA within extended versions of three previously characterized 23S rRNA fragments F1', F2', and F4' at nucleotides C2601/A2602, U2584/U2585 (F1'), U2506 (F2'), and A2062/C2063 (F4'). Each of these nucleotides lies within the peptidyl transferase loop region of the 23S rRNA. Cross-links were also formed with ribosomal proteins L27 (strong) and L33 (weak), as shown earlier. The antibiotics sparsomycin, chloramphenicol, the streptogramins pristinamycin IA and IIA, gougerotin, lincomycin, and spiramycin were tested for their capacity to alter the identities or yields of each of the cross-links. Although no new cross-links were detected, each of the drugs produced major changes in cross-linking yields, mainly decreases, at one or more rRNA sites but, with the exception of chloramphenicol, did not affect cross-linking to the ribosomal proteins. Moreover, the effects were closely similar for both deacylated and N-Ac-Phe-tRNAs, indicating that the drugs selectively perturb the 3' terminus of the tRNA. The strongest decreases in the rRNA cross-links were observed with pristinamycin IIA and chloramphenicol, which correlates with their both producing complex chemical footprints on 23S rRNA within E. coli ribosomes. Furthermore, gougerotin and pristinamycin IA strongly increased the yields of fragments F2' (U2506) and F4' (U2062/C2063), respectively. The results obtained with an RNAse H approach correlate well with primer extension data implying that cross-linking occurs primarily to the bases. Both sets of data are also consistent with the results of earlier rRNA footprinting experiments on antibiotic-ribosome complexes. It is concluded that the antibiotics perturb the relative positioning of the 3' end of the P/P'-site-bound tRNA and the peptidyl transferase loop region of 23S rRNA.  相似文献   

19.
20.
Short base-paired RNA fragments, and fragments containing intra-RNA cross-links, were isolated from E. coli 23S rRNA or 50S ribosomal subunits by two-dimensional gel electrophoresis. The interactions thus found were used as a first basis for constructing a secondary structure model of the 23S rRNA. Sequence comparison with the 23S rDNA from Z. mays chloroplasts, as well as with the 16S (large subunit) rDNA from human and mouse mitochondria, enabled the experimental model to be improved and extrapolated to give complete secondary structures of all four species. The structures are organized in well-defined domains, with over 450 compensating base changes between the two 23S species. Some ribosomal structural "'switches" were found, one involving 5S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号