首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many viruses are known to undergo rapid evolutionary changes under selective pressures. The HIV-1 envelope glycoprotein 120 (gp120) shows extreme selection for NXS/T sequons, the potential sites of N-glycosylation. Although the average number of sequons in gp120 appears to be relatively stable in the recent past, even slight changes in the distribution of sequons may potentially play crucial roles in protein interaction and viral infection. This study tracked the prevalence and distribution of NXS/T sequons in gp120 over a period of 29 years (from 1981 to 2009). The gp120 showed location specific distribution of sequons with higher density in the outer domain of the molecule. The NXT sequon density decreased in the outer domain (despite the increase in the sequon specific amino acid threonine), but increased in the inner domain. By contrast, the NXS sequon density increased specifically in the outer domain. Related changes were also seen in the distribution probabilities of sequons in two domains. The results indicate that the gp120, chiefly in subtype B, is redistributing NXS/T sequons within the molecule with specific selection for NXS sequons. The subtle evolution of sequons in gp120 may have implications in viral resistance and infection.  相似文献   

2.
The addition of N-linked oligosaccharides to Asn-X-(Ser/Thr) sites is catalyzed by the oligosaccharyltransferase, an enzyme closely associated with the translocon and generally thought to have access only to nascent chains as they emerge from the ribosome. However, the presence of the sequon does not automatically ensure core glycosylation because many proteins contain sequons that remain either nonglycosylated or glycosylated to a variable extent. In this study, hepatitis C virus (HCV) envelope protein E1 was used as a model to study the efficiency of N-glycosylation. HCV envelope proteins, E1 and E2, were released from a polyprotein precursor after cleavage by host signal peptidase(s). When expressed alone, E1 was not efficiently glycosylated. However, E1 glycosylation was improved when expressed as a polyprotein including full-length or truncated forms of E2. These data indicate that glycosylation of E1 is dependent on the presence of polypeptide sequences located downstream of E1 on HCV polyprotein.  相似文献   

3.
N-Glycosylation, the most common and most versatile protein modification reaction, occurs at the beta-amide of the aspargine of the Asn-Xaa-Ser/Thr sequon. For reasons that are unclear, not all such sequons are glycosylated. To find patterns that affect glycosylation, we examined the amino acid residues from the 20th preceding the sequon to the 20th residue following it, using bioinformatics tools. A clean data set of annotated, experimentally verified, glycosylated and nonglycosylated sequons derived from 617 well-defined nonredundant N- and N-,O-glycoproteins listed in SWISS-PROT (June 2002) was used. NXS and NXT sequons were analyzed separately. Although no overt patterns were found to explain sequon occupancy or nonoccupancy, trends for over- or underrepresentation of certain amino acids at particular positions were statistically significant and different in NXS and NXT sequons. In extension of earlier reports, none of the 80 Asn-Pro-Ser/Thr found were glycosylated, and a markedly low level of glycosylation was seen in sequons with Pro at the position following the Ser/Thr. In addition, a general observation was made that the considerable number of glycosylated sequons in the C-terminal 10 residues of glycoproteins suggests that N-glycosylation in these cases may be posttranslational and not cotranslational, as widely accepted.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.  相似文献   

5.
Rao RS  Bernd W 《Bioinformation》2010,5(5):208-212
Protein N-glycosylation requires the presence of asparagine (N) in the consensus tri-peptide NXS/T (where X is any amino acid, S is serine and T is threonine). Several factors affect the glycosylation potential of NXS/T sequons and one such factor is the type of amino acid at position X. While proline was shown to negatively affect N-glycosylation, the nature of other amino acids at this position is not clear. Using Markov chain analysis of tri-peptide NXS/T from viral, archaeal and eukaryotic proteins as well as experimentally confirmed N-glycosylated sequons from eukaryotic proteins, we show here that the occurrence of most sequon types differ significantly from the expected probability. Sequon types with F, G, I, S, T and V amino acids are consistently preferred while those with P and charged amino acids are under-represented in all four groups. Further, proteins contained far fewer number of possible sequon types (maximum 20 types for NXS or NXT taken separately) for any given number of sequons, which may be explained based on random sampling. Consistent with the present finding, majority of the over-represented sequons found in two important viral envelope glycoproteins (hemagglutinin of influenza A H3N2 and glycoprotein120 of HIV-1) are indeed preferred sequon types, which may provide a selective advantage. Accordingly, although there seems to be some preference for sequons, this preference may not be unique to N-glycosylation.  相似文献   

6.
The hemagglutinin (HA) protein is a major virulence determinant for the 1918 pandemic influenza virus; however, it encodes no known virulence-associated determinants. In comparison to seasonal influenza viruses of lesser virulence, the 1918 H1N1 virus has fewer glycosylation sequons on the HA globular head region. Using site-directed mutagenesis, we found that a 1918 HA recombinant virus, of high virulence, could be significantly attenuated in mice by adding two additional glycosylation sites (asparagine [Asn] 71 and Asn 286) on the side of the HA head. The 1918 HA recombinant virus was further attenuated by introducing two additional glycosylation sites on the top of the HA head at Asn 142 and Asn 172. In a reciprocal experimental approach, deletion of HA glycosylation sites (Asn 142 and Asn 177, but not Asn 71 and Asn 104) from a seasonal influenza H1N1 virus, A/Solomon Islands/2006 (SI/06), led to increased virulence in mice. The addition of glycosylation sites to 1918 HA and removal of glycosylation sites from SI/06 HA imposed constraints on the theoretical structure surrounding the glycan receptor binding sites, which in turn led to distinct glycan receptor binding properties. The modification of glycosylation sites for the 1918 and SI/06 viruses also caused changes in viral antigenicity based on cross-reactive hemagglutinin inhibition antibody titers with antisera from mice infected with wild-type or glycan mutant viruses. These results demonstrate that glycosylation patterns of the 1918 and seasonal H1N1 viruses directly contribute to differences in virulence and are partially responsible for their distinct antigenicity.  相似文献   

7.
Human immunodeficiency virus (HIV) is the infectious agent causing acquired immunodeficiency syndrome (AIDS), a deadliest scourge of human society. Hepatitis C virus (HCV) is a major causative agent of chronic liver disease and infects an estimated 170 million people worldwide, resulting in a serious public health burden. Due to shared routes of transmission, co-infection with HIV and HCV has become common among individuals who had high risks of blood exposures. Among hemophiliacs the co-infection rate accounts for 85%; while among injection drug users (IDU) the rate can be as high as 90%. HIV can accelerate the progression of HCV-related liver disease, particularly when immunodeficiency has developed. Although the effect of HCV on HIV infection is controversial, most studies showed an increase in mortality due to liver disease. HCV may act as a direct cofactor to fasten the progression of AIDS and decrease the tolerance of highly active antiretroviral therapy (HARRT). Conversely, HAART-related hepatotoxicity may enhance the progression of liver fibrosis. Due to above complications, co-infection with HCV and HIV-1 has imposed a critical challenge in the management of these patients. In this review, we focus on the epidemiology and transmission of HIV and HCV, the impact of the two viruses on each other, and their treatment.   相似文献   

8.
Human immunodeficiency virus (HIV) is the infectious agent causing acquired immu-nodeficiency syndrome (AIDS),a deadliest scourge of human society. Hepatitis C virus (HCV) is a major causative agent of chronic liver disease and infects an estimated 170 million people worldwide,resulting in a serious public health burden. Due to shared routes of transmission,co-infection with HIV and HCV has become common among individuals who had high risks of blood exposures. Among hemophiliacs the co-infection rate accounts for 85%; while among injection drug users (IDU) the rate can be as high as 90%. HIV can accelerate the progression of HCV-related liver disease,particularly when immunodeficiency has developed. Although the effect of HCV on HIV infection is controversial,most studies showed an increase in mortality due to liver disease. HCV may act as a direct cofactor to fasten the progression of AIDS and decrease the tolerance of highly active antiretroviral therapy (HARRT). Conversely,HAART-related hepatotoxicity may enhance the progression of liver fibrosis. Due to above complications,co-infection with HCV and HIV-1 has imposed a critical challenge in the management of these patients. In this review,we focus on the epidemiology and transmission of HIV and HCV,the impact of the two viruses on each other,and their treatment.  相似文献   

9.
10.
11.
Many eukaryotic proteins are modified by N-linked glycosylation, a process in which oligosaccharides are added to asparagine residues in the sequon Asn-X-Ser/Thr. However, not all such sequons are glycosylated. For example, rabies virus glycoprotein (RGP) contains three sequons, only two of which appear to be glycosylated in virions. To examine further the signals in proteins which regulate N-linked core glycosylation, the glycosylation efficiencies of each of the three sequons in the antigenic domain of RGP were compared. For these studies, mutants were generated in which one or more sequons were deleted by site-directed mutagenesis. Core glycosylation of these mutants was studied using two independent systems: 1) in vitro translation in rabbit reticulocyte lysate supplemented with dog pancreatic microsomes, and 2) transfection into glycosylation-deficient Chinese hamster ovary cells. Parallel results were obtained with both systems, demonstrating that the sequon at Asn37 is inefficiently glycosylated, the sequons at Asn247 and Asn319 are efficiently glycosylated, and the glycosylation efficiency of each sequon is not influenced by glycosylation at other sequons in this protein. High levels of cell surface expression of RGP in Chinese hamster ovary cells are seen with any mutant containing an intact sequon at Asn247 or Asn319, whereas low levels of cell surface expression are seen when the sequon at Asn37 is present alone; deletion of all three sequons completely blocks RGP cell surface expression. Thus, although core glycosylation at Asn37 is inefficient, it is still sufficient to support a biological function, cell surface expression. Future studies using mutagenesis of this model protein and its expression in these two well defined systems will aim to begin to unravel the rules governing core glycosylation of glycoproteins.  相似文献   

12.
HIV/AIDS: in search of an animal model   总被引:4,自引:0,他引:4  
AIDS is among the most devastating diseases of our time, claiming the lives of approximately 3 million people per year. The primary cause of AIDS, human immunodeficiency virus type 1 (HIV-1), is a pathogen that is highly specific for humans and generally does not infect or cause disease in other species. This property complicates the generation of animal models that are urgently needed to test new antiretroviral therapies and vaccines. The most practical animal models developed to date consist of infection of rhesus macaques with a simian immunodeficiency virus (SIV) or chimeric HIV/SIV viruses. Although these models are useful for particular applications, the fact that SIV is a distinct virus compared with HIV-1 represents a significant limitation to their use. Here, we discuss the uses and limitations of existing models and recent advances that might lead to better animal models for HIV/AIDS.  相似文献   

13.
More than 10 G protein-coupled receptors (GPCRs) have been shown to act as coreceptors for infection of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We have isolated HIV-1 variants infectious to primary brain-derived CD4-positive cells (BT-3 and BT-20/N) and U87/CD4 glioma cells that are resistant to T-cell line-tropic (T-tropic), macrophage-tropic (M-tropic), and T- and M-tropic (dualtropic) (X4, R5, and R5X4) HIV-1 strains. These primary brain-derived cells were also highly susceptible to HIV-2(ROD), HIV-2(SBL6669), and SIV(mndGB-1). A factor or coreceptor that determines the susceptibility of these brain-derived cells to these HIV and SIV strains has not been fully identified. To identify this coreceptor, we examined amino acid sequences of all known HIV and SIV coreceptors and noticed that tyrosine residues are well conserved in their extracellular amino-terminal domains. By this criterion, we selected 18 GPCRs as candidates of coreceptors for HIV and SIV strains infectious to these brain-derived cells. mRNA expression of an orphan GPCR, RDC1, was detected in the brain-derived cells, the C8166 T-cell line, and peripheral blood lymphocytes, all of which are susceptible to HIV-1 variants, but not in macrophages, which are resistant to them. When a CD4-expressing cell line, NP-2/CD4, which shows strict resistance to infection not only with HIV-1 but also with HIV-2 or SIV, was transduced with the RDC1 gene, the cells became highly susceptible to HIV-2 and SIV(mnd) strains but to neither M- nor T-tropic HIV-1 strains. The cells also acquired a low susceptibility to the HIV-1 variants. These findings indicate that RDC1 is a novel coreceptor for several HIV-1, HIV-2, and SIV strains which infect brain-derived cells.  相似文献   

14.
DC-SIGN, a type II membrane protein with a C-type lectin binding domain that is highly expressed on mucosal dendritic cells (DCs) and certain macrophages in vivo, binds to ICAM-3, ICAM-2, and human and simian immunodeficiency viruses (HIV and SIV). Virus captured by DC-SIGN can be presented to T cells, resulting in efficient virus infection, perhaps representing a mechanism by which virus can be ferried via normal DC trafficking from mucosal tissues to lymphoid organs in vivo. To develop reagents needed to characterize the expression and in vivo functions of DC-SIGN, we cloned, expressed, and analyzed rhesus macaque, pigtailed macaque, and murine DC-SIGN and made a panel of monoclonal antibodies (MAbs) to human DC-SIGN. Rhesus and pigtailed macaque DC-SIGN proteins were highly similar to human DC-SIGN and bound and transmitted HIV type 1 (HIV-1), HIV-2, and SIV to receptor-positive cells. In contrast, while competent to bind virus, murine DC-SIGN did not transmit virus to receptor-positive cells under the conditions tested. Thus, mere binding of virus to a C-type lectin does not necessarily mean that transmission will occur. The murine and macaque DC-SIGN molecules all bound ICAM-3. We mapped the determinants recognized by a panel of 16 MAbs to the repeat region, the lectin binding domain, and the extreme C terminus of DC-SIGN. One MAb was specific for DC-SIGN, failing to cross-react with DC-SIGNR. Most MAbs cross-reacted with rhesus and pigtailed macaque DC-SIGN, although none recognized murine DC-SIGN. Fifteen of the MAbs recognized DC-SIGN on DCs, with MAbs to the repeat region generally reacting most strongly. We conclude that rhesus and pigtailed macaque DC-SIGN proteins are structurally and functionally similar to human DC-SIGN and that the reagents that we have developed will make it possible to study the expression and function of this molecule in vivo.  相似文献   

15.
HIV coreceptors, cell tropism and inhibition by chemokine receptor ligands.   总被引:6,自引:0,他引:6  
HIV is a persistent virus that survives and replicates despite an onslaught by the host's immune system. A strategy for cell entry, requiring the use of two receptors, has evolved that may help evade neutralizing antibodies. HIV and SIV usually require both CD4 and a seven transmembrane (7TM) coreceptor for infection. At least eleven different 7TM coreceptors have been identified that confer HIV and/or SIV entry. For HIV-1, the major coreceptors are CCR5 and CXCR4, while the role of other coreceptors for replication and cell tropism in vivo is currently unclear. Polymorphisms in the CCR5 gene that reduce CCR5 expression levels, protect against disease progression, suggesting that drugs targeted to CCR5 could be effective. Such therapies however will not work if HIV simply adapts to use alternative coreceptors. In the light of these themes, this review will discuss the following topics: (i) the coreceptors used by primary HIV-1 and HIV-2 viruses, (ii) the properties and coreceptors of HIV-2 strains that infect cells without CD4, (iii) the role of coreceptors in HIV cell tropism and particularly macrophage infection and (iv) the properties of chemokine receptor ligands that block HIV infection.  相似文献   

16.
The primate immunodeficiency virus Vif proteins are essential for replication in appropriate cultured cell systems and, presumably, for the establishment of productive infections in vivo. We describe experiments that define patterns of complementation between human and simian immunodeficiency virus (HIV and SIV) Vif proteins and address the determinants that underlie functional specificity. Using human cells as virus producers, it was found that the HIV-1 Vif protein could modulate the infectivity of HIV-1 itself, HIV-2 and SIV isolated from African green monkeys (SIVAGM). In contrast, the Vif proteins of SIVAGM and SIV isolated from Sykes' monkeys (SIVSYK) were inactive for all HIV and SIV substrates in human cells even though, at least for the SIVAGM protein, robust activity could be demonstrated in cognate African green monkey cells. These observations suggest that species-specific interactions between Vif and virus-producing cells, as opposed to between Vif and virus components, may govern the functional consequences of Vif expression in terms of inducing virion infectivity. The finding that the replication of murine leukemia virus could also be stimulated by HIV-1 Vif expression in human cells further supported this notion. We speculate that species restrictions to Vif function may have contributed to primate immunodeficiency virus zoonosis.  相似文献   

17.
HIV is a persistent virus that survives and replicates despite an onslaught by the host's immune system. A strategy for cell entry, requiring the use of two receptors, has evolved that may help evade neutralizing antibodies. HIV and SIV usually require both CD4 and a seven transmembrane (7TM) coreceptor for infection. At least eleven different 7TM coreceptors have been identified that confer HIV and/ or SIV entry. For HIV-1, the major coreceptors are CCR5 and CXCR4, while the role of other coreceptors for replication and cell tropism in vivo is currently unclear. Polymorphisms in the CCR5 gene that reduce CCR5 expression levels, protect against disease progression, suggesting that drugs targeted to CCR5 could be effective. Such therapies however will not work if HIV simply adapts to use alternative coreceptors. In the light of these themes, this review will discuss the following topics: (i) the coreceptors used by primary HIV-1 and HIV-2 viruses, (ii) the properties and coreceptors of HIV-2 strains that infect cells without CD4, (iii) the role of coreceptors in HIV cell tropism and particularly macrophage infection and (iv) the properties of chemokine receptor ligands that block HIV infection.  相似文献   

18.
The cells of most Old World monkey species exhibit early, postentry restrictions on infection by human immunodeficiency virus type 1 (HIV-1) but not by simian immunodeficiency virus of macaques (SIV(mac)). Conversely, SIV(mac), but not HIV-1, infection is blocked in most New World monkey cells. By using chimeric HIV-1/SIV(mac) viruses capable of a single round of infection, we demonstrated that a major viral determinant of this restriction is the capsid (CA) protein. The efficiency of early events following HIV-1 and SIV(mac) entry is apparently determined by the interaction of the incoming viral CA and species-specific host factors.  相似文献   

19.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号