首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in adipocyte cyclic AMP concentrations in response to 100 microM forskolin and 10 microM isoproterenol over a 4 hour period were found to be similar; with each agent, a peak response was noted within 30 minutes. In general, the greater the magnitude of peak response, the more rapid the decline of cyclic AMP concentration during the ensuing 3 1/2 hours. Alpha-2 adrenergic activation, achieved with 10 microM clonidine or 10 microM epinephrine, substantially reduced the cyclic AMP concentrations in cells stimulated by 100 microM forskolin or 10 microM isoproterenol. Isoproterenol-stimulated cells appeared to be more sensitive to alpha adrenergic inhibition than did forskolin-stimulated cells. Cells preincubated for 3 hours with 100 microM forskolin were markedly less responsive to a second exposure to the diterpine. Cells exposed to forskolin for 3 hours also had a reduced response when incubated with isoproterenol; thus, desensitization to forskolin appears to be heterologous. Forskolin desensitization did not appear to be dependent on cellular ATP depletion since cells mildly stimulated during preincubation were as severely desensitized as those adipocytes strongly stimulated. Maximum desensitization required a preincubation time of 1-2 hours with either isoproterenol or forskolin.  相似文献   

2.
Long-term infusion of prostacyclin, or its analogs, is an effective treatment for severe pulmonary arterial hypertension. However, dose escalation is often required to maintain efficacy. The aim of this study was to investigate the mechanisms of prostacyclin receptor desensitization using the prostacyclin analog cicaprost in rat pulmonary artery smooth muscle cells (PASMCs). Desensitization of the cAMP response occurred in 63 nM cicaprost after a 6-h preincubation with agonist. This desensitization was reversed 12 h after agonist removal, and resensitization was inhibited by 10 microg/ml of cycloheximide. Desensitization was heterologous since desensitization to other G(s)alpha-adenylyl cyclase (AC)-coupled agonists, isoproterenol (1 microM), adrenomedullin (100 nM), or bradykinin (1 microM), was also reduced by preincubation with cicaprost. The reduced cAMP response to prolonged cicaprost exposure appeared to be due to inhibition of AC activity since the responses to the directly acting AC agonist forskolin (3 microM) and the selective AC5 activator NKH-477 were similarly reduced. Expression of AC2 and AC5/6 protein levels transiently decreased after 1 h of cicaprost exposure. The PKA inhibitor H-89 (1 microM) added 1 h before cicaprost preincubation (6 h, 63 nM) completely reversed cicaprost-induced desensitization, whereas the PKC inhibitor bisindolylmaleimide (100 nM) was only partly effective. Desensitization was not prevented by the G(i) inhibitor pertussis toxin. In conclusion, chronic treatment of PASMCs with cicaprost induced heterologous, reversible desensitization by inhibition of AC activity. Our data suggest that heterologous G(s)alpha desensitization by cicaprost is mediated predominantly by a PKA-inhibitable isoform of AC, most likely AC5/6.  相似文献   

3.
After section of the sciatic nerve, the basal adenylate cyclase (AC) activity in rat gastrocnemius muscle increased 6-7 times per membrane protein and about 2 times per whole muscle in the following 30 or 40 days. The AC activity in the muscle 30 days after denervation was increased about 4 times by forskolin. Calcitonin gene-related peptide (CGRP) also increased the adenylate cyclase activity in the denervated muscle. The binding of [3H]-forskolin (10nM) to cells isolated from gastrocnemius muscle was examined to determine the amount of AC molecules. Inhibition of [3H]-forskolin binding by increasing amounts of unlabeled forskolin gave a sigmoid curve with a IC50 value of 3 x 10(-7) M. Results showed that the number of [3H]-forskolin binding sites per cell was higher on the denervated side than on the control side, like the basal AC activity. The IC50 values for inhibition by unlabeled forskolin of binding of [3H]-forskolin were similar to muscles on the control and denervated sides. These results suggest that an increase in the AC activity induced by denervation was due to an increase in the numbers of AC molecules in the muscle.  相似文献   

4.
Prostaglandin E (PGE) receptor density in hepatic plasma membranes can be down-regulated by in vivo exposure to the 16,16-dimethyl analog of PGE2, and this is associated with desensitization of PGE-sensitive adenylate cyclase. These studies examined adenylate cyclase response to other agonists in membranes whose PGE receptor density was 51% decreased and whose maximal PGE-stimulated adenylate cyclase activity was 31% decreased. Down-regulated membranes had a 37% decrease in their maximal response to glucagon, indicating that treatment with the PGE analog had induced both homologous and heterologous desensitization. To determine whether adenylate cyclase had been affected, stimulation with NaF, guanyl 5'-yl imidodiphosphate (GppNHp), and forskolin was examined in both intact and solubilized membranes. Intact membranes had decreased adenylate cyclase responses to all three stimulators (NaF, -41%; GppNHp, -25%; forskolin, -41%) as did solubilized membranes (NaF, -51%; GppNHp, -50%; forskolin, -50%), suggesting alterations in adenylate cyclase rather than indirect membrane effects. Cholera toxin activation and labeling were examined to more directly assess whether the guanine nucleotide (G/F) regulatory component of adenylate cyclase had been affected. Cholera toxin activation was 42% less in down-regulated membranes, and these membranes incorporated less label when the incubation was performed in the presence of [32]NAD. Solubilized G/F subunit activity from down-regulated membranes was less effective in reconstitution of adenylate cyclase activity from cyc- cell membranes than G/F activity from control membranes. These data indicate that in vivo exposure to the PGE analog causes both homologous and heterologous desensitization of adenylate cyclase as well as an apparent quantitative decrease in G/F.  相似文献   

5.
The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase involves a cyclic AMP-dependent lesion that is after the G-protein.  相似文献   

6.
During fetal and neonatal development, beta-adrenergic receptors (beta-ARs) appear to be resistant to desensitization by beta-agonist drugs. To determine the mechanisms underlying the regulatory differences between adults and neonates, we administered isoproterenol, a mixed beta(1)/beta(2)-AR agonist, and terbutaline, a beta(2)-selective agonist. Effects were examined in the ensuing 4 h after a single injection, or after the last of four daily injections. We prepared cell membranes from heart (predominantly beta(1)-ARs) and liver (predominantly beta(2)-ARs) and assessed signal transduction in the adenylyl cyclase (AC) pathway. In the first few hours after a single administration of isoproterenol to adult rats, cardiac beta-ARs showed activation of G proteins (elevated AC response to forskolin) and desensitization of beta-AR-mediated responses; after the fourth injection, heterologous desensitization emerged, characterized by a loss of signaling mediated either through beta-ARs or glucagon receptors. Terbutaline evoked an increase in the forskolin response but no desensitization of receptor-mediated responses. When we gave the same treatments to neonatal rats, we observed cardiac G protein activation, but there was neither homologous nor heterologous desensitization of beta-ARs or glucagon receptors. In the adult liver, isoproterenol and terbutaline both failed to evoke desensitization, regardless of whether the drugs were given once or for 4 days. In neonates, however, acute or chronic treatment elicited homologous desensitization of beta-AR-mediated AC signaling, while sensitizing the response to glucagon. These results show that neonatal beta-ARs are inherently capable of desensitization in some, but not all, cell types; cellular responses can be maintained through heterologous sensitization of signaling proteins downstream from the receptor. Differences from adult patterns of response are highly tissue selective and are likely to depend on ontogenetic differences in subtypes of beta-ARs and AC.  相似文献   

7.
C I Smith  G N Pierce  N S Dhalla 《Life sciences》1984,34(13):1223-1230
The effect of chronic experimental diabetes on the adenylate cyclase system (AC) in the rat heart was investigated. Rats were made diabetic by an intravenous injection of streptozotocin (65 mg/kg), hearts were removed 8 weeks later and washed cell particles were isolated. AC activity was measured in the absence and presence of different concentrations of forskolin, NaF, GTP analogue [Gpp(NH)p] or epinephrine. A significant depression in the epinephrine stimulated AC activity was observed in diabetic hearts. Basal AC activity and stimulation of AC with forskolin, NaF and Gpp(NH)p were not significantly different between control and diabetic preparations. These results indicate no apparent alterations in the regulatory or catalytic properties of AC in hearts from chronic diabetic rats. The observed depression in epinephrine stimulated AC activity may account for the depressed inotropic action of catecholamines in the diabetic cardiomyopathy.  相似文献   

8.
Stimulating the beta-adrenoceptor (beta-AR) signaling pathway can enhance the functional repair of skeletal muscle after injury, but long-term use of beta-AR agonists causes beta-AR downregulation, which may limit their therapeutic effectiveness. The aim was to examine beta-AR signaling during early regeneration in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles after bupivacaine injury and test the hypothesis that, during regeneration, beta-agonist administration does not cause beta-AR desensitization. Rats received either the beta-AR agonist fenoterol (1.4 mgxkg(-1)xday(-1) ip) or saline for 7 days postinjury. Fenoterol reduced beta-AR density in regenerating soleus muscles by 42%. Regenerating EDL muscles showed a threefold increase in beta-AR density, and, again, these values were 43% lower with fenoterol treatment. An amplified adenylate cyclase (AC) response to isoproterenol was observed in cell membrane fragments from EDL and soleus muscles 7 days postinjury. Fenoterol attenuated this increase in regenerating EDL muscles but not soleus muscles. beta-AR signaling mechanisms were assessed using AC stimulants (NaF, forskolin, and Mn(2+)). Although beta-agonist treatment reduces beta-AR density in regenerating muscles, these muscles can produce large cAMP responses relative to healthy (uninjured) muscles. Desensitization of beta-AR signaling in regenerating muscles is prevented by altered rates of beta-AR synthesis and/or degradation, changes in G protein populations and coupling efficiency, and altered AC activity. These mechanisms have important therapeutic implications for modulating beta-AR signaling to enhance muscle repair after injury.  相似文献   

9.
We have examined the cell-free heterologous desensitization of adenylyl cyclase in plasma membrane preparations from S49 wild-type (WT) and kin- cells (which lack cAMP-dependent protein kinase) incubated with purified catalytic subunit of cAMP-dependent protein kinase (cA.PKc). cA.PKc caused a rapid (t1/2 = 40 s) decrease in the hormone responsiveness of adenylyl cyclase in the WT membrane preparations that mimicked the intact cell heterologous desensitization; that is, there was an increase in the Kact for both epinephrine and prostaglandin E1 (PGE1) stimulations of adenylyl cyclase induced at the receptor level because neither forskolin- nor NaF-stimulated activity was affected. The desensitization was independent of agonist occupancy of the receptor, and the effects were blocked both by the active fragment (amino acids 5-22) of the specific inhibitor of cA.PK and by p[NH]ppA. cA.PKc treatment of kin- membranes resulted in a heterologous desensitization that resembled the effects of WT adenylyl cyclase, with the exception that forskolin-stimulated activity was also reproducibly decreased by 24%. cA.PKc had no effect on WT membranes isolated from cells that had previously undergone maximal heterologous desensitization during treatment with 10 microM forskolin. In contrast, cA.PKc-induced heterologous desensitization of kin- membranes was additive with the epinephrine-induced homologous desensitization of intact cells. Cell-free desensitizations were reversed by incubation of membranes with cA.PKc and ADP, conditions that drive the kinase reaction backward. The similarities of our cell-free cA.PKc-mediated heterologous desensitization of adenylyl cyclase with the intact cell desensitization support our hypothesis that heterologous desensitization of the WT lymphoma cells is mediated by cA.PK via a mechanism independent of homologous desensitization.  相似文献   

10.
《Insect Biochemistry》1990,20(3):239-244
The octopamine-sensitive adenylate cyclase associated with haemocytes of the American cockroach, Periplaneta americana, has been used as a model system with which to study desensitization of the octopamine receptor. Preincubation of the haemocytes with octopamine results in a large decrease in subsequent maximal stimulation of cyclic AMP production by octopamine with little change in affinity of the receptor for the agonist. This effect of preincubation is dependent upon the concentration of octopamine in the preincubation media and on the duration of exposure. The attenuation appears to be a receptor-mediated event rather than an artifact of the preincubation. Octopamine receptor agonists (octopamine, synephrine, N-demethylchlordimeform) induce desensitization while biogenic amines with poor octopamine receptor affinity (dopamine, serotonin, norepinephrine) are without affect. In contrast, the octopamine receptor antagonist, phentolamine, appears to enhance subsequent stimulation by octopamine. The attenuation of octopamine stimulation of adenylate cyclase is conserved in broken-cell preparations with no alteration of responses to NaF or forskolin. Incubation of the cells with dibutyryl cyclic AMP or forskolin does not induce desensitization. The data indicate that the OA receptors coupled to AC in cockroach haemocytes undergo an homologous desensitization in response to exposure to agonists.  相似文献   

11.
Calcitonin gene-related peptide promotes Schwann cell proliferation   总被引:7,自引:0,他引:7       下载免费PDF全文
Schwann cells in culture divide in response to defined mitogens such as PDGF and glial growth factor (GGF), but proliferation is greatly enhanced if agents such as forskolin, which increases Schwann cell intracellular cAMP, are added at the same time as PDGF or GGF (Davis, J. B., and P. Stroobant. 1990. J. Cell Biol. 110:1353-1360). The effect of forskolin is probably due to an increase in numbers of PDGF receptors (Weinmaster, G., and G. Lemke. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:915-920. Neuropeptides and beta-adrenergic agonists have been reported to have no effect on potentiating the mitogenic response of either PDGF or GGF. We show that the neuropeptide calcitonin gene- related peptide (CGRP) increases Schwann cell cAMP levels, but the cells rapidly desensitize. We therefore stimulated the cells in pulsatile fashion to partly overcome the effects of desensitization and show that CGRP can synergize with PDGF to stimulate Schwann cell proliferation, and that CGRP is as effective as forskolin in the pulsatile regime. CGRP is a good substrate for the neutral endopeptidase 24.11. Schwann cells in vivo have this protease on their surface, so the action of CGRP could be terminated by this enzyme and desensitization prevented. We therefore suggest that CGRP may play an important role in stimulating Schwann cell proliferation by regulating the response of mitogenic factors such as PDGF.  相似文献   

12.
Sensitivity of adenylyl cyclase signal system to 5,5′-dithobis(2-nitrobenzoic acid) (DTNB) oxidizing SH-groups of cystein residues to disulfide bonds was studied. It was shown that treatment of plasma membranes fractions of smooth muscles of the mollusc Anodonta cygnea and of rat skeletal muscles as well as of homogenate of mouse fibroblasts culture of L strain with micromole concentrations of DTNB led to a decrease of activity of adenylyl cyclase (AC) stimulated by GIDP, sodium fluoride, and, to a lesser degree, forskolin. Dithiothreitol (DTT) partly restored the stimulating effects of GIDP, NaF, and forskolin, the effect of this dithiol being dose-dependent. AC stimulated by biogenic amines—serotonin in mollusc muscles, isoproterenol in rat muscles, and both hormones in mouse fibroblasts—is more sensitive to DTNB than the enzyme stimulated by non-hormonal agents. Thus, the stimulatory effects of hormones decreased dose-dependently in the presence of 10–100 μM DTNB and were almost completely blocked by 250 μM reagent. These effects were partly restored in the presence of 5 mM DTT. The obtained data indicate a high sensitivity of the hormone-stimulated AC to action of the reagents interacting specifically with SH-groups of the proteins components of the AC system. In the rat muscle membranes treated with 25 μM DTNB, no significant rightward shift was observed of the curve of competitive replacement of the β-adrenergic receptor antagonist [3H]-dihydroalprenolol by the β-agonist isoproterenol in the presence of GTP and the affinity of the agonist to the receptor somewhat decreased, which indicates a disturbance of functional coupling of the β-adrenergic receptor with G-protein after treatment with DTNB.  相似文献   

13.
Chronic exposure of cells to cognate agonists has been established to cause homologous desensitization of G protein-coupled receptors. In this work, we show that exposure of adult rat eardiomyoeytes to isoproterenol (ISO) for 24 h led to the desensitization of -adrenoceptor (-AR) coupled adenylyl cyclase (AC) activity, which was associated with an increased inhibition of AC by M2-muscarinic receptor (MR) agonist, carbachol (Cch), and a decreased inhibition of AC by A1-adenosine receptor (AdR) agonist, N6-phenylisopropyladenosine (R-PIA). Chronic exposure of eells to Cch caused the desensitization of M2-MR-coupled AC, decreased the inhibitory action of R-PIA on AC and increased ISO-stimulated AC, while chronic exposure to R-PIA caused the desensitization of A1-AdR-coupled AC and modestly increased ISO-stimulated AC without any significant effect on Cch inhibition of the enzyme. Thus, chronic exposure ol cardiomyocytes revealed for the first time a more complex and differential nature of cross-talk among the three major G-coupled receptors in modulating AC.  相似文献   

14.
Desensitization of catecholamine stimulated adenylate cyclase (AC) activity is demonstrated in membranes derived from turkey erythrocytes pre-treated with isoproterenol. Membranes from desensitized cells had a loss in maximal catecholamine stimulated adenylate cyclase activity of 104 +/- 13 (pmols/mg protein/10', p less than .001) compared with controls. When adenylate cyclase was maximally stimulated with NaF or Gpp(NH)p, the decrements were 84 +/- 19 (p less than .005) and 92 +/- 32 (p less than .05) pmol/mg protein/10' respectively. There was no change in beta-adrenergic receptor number in membranes derived from treated cells. While the molecular mechanism accounting for the desensitization is uncertain, the data is consistent with the hypothesis that there is a lesion distal to the beta-adrenergic receptor, possibly involving the nucleotide site or the catalytic subunit of adenylate cyclase, causing the desensitization in the isoproterenol treated cells.  相似文献   

15.
The mode of PGE2-induced desensitization of the adenylate cyclase of a murine macrophage-like cell line, P388D1 was investigated. The exposure of cells to PGE2 for 60 min induced PGE2-specific desensitization of the adenylate cyclase system which still responded normally to other specific ligand such as isoproterenol, 5'-guanylimidodiphosphate (Gpp(NH)p), or forskolin. The exposure of the cells to PGE2 for 6 hr induced heterologous desensitization, as the responses of adenylate cyclase to PGE2 as well as to isoproterenol or Gpp(NH)p were significantly reduced. The lowest concentration of PGE2 to induce both early homologous and late heterologous desensitization was found to be about two-fold over the KD of the low affinity PGE2-binding sites of P388D1 cells. The early homologous desensitization appeared to be due in part to the reduction in number of PGE2 receptors from the cell surface. The late heterologous desensitization may involve functional and/or structural alteration of Gs proteins, in addition to the reduction of PGE2 receptors from the cell surface.  相似文献   

16.
Alteration of cochlear blood flow may be involved in the etiology of inner ear disorders like sudden hearing loss, fluctuating hearing loss and tinnitus. The aim of the present study was to localize the vasodilator calcitonin gene-related peptide (CGRP) and to identify CGRP receptors and their signaling pathways in the gerbil spiral modiolar artery (SMA) that provides the main blood supply of the cochlea. CGRP was localized in perivascular nerves by immunocytochemistry. The vascular diameter and cytosolic Ca2+ concentration [Ca2+]i in the smooth muscle cells were measured simultaneously with videomicroscopy and fluo-4-microfluorometry. Calcitonin receptor-like receptor (CRLR) mRNA was identified by RT-PCR as a specific 288 bp fragment in total RNA isolated from the vascular wall. The SMA was preconstricted by a 2-min application of 1 nM endothelin-1 (ET1). CGRP, forskolin, and dibutyryl-cAMP caused a vasodilation (EC50 = 0.1 nM, 0.3 mM, and 20 mM). CGRP and forskolin caused an increase in cAMP production and a transient decrease in the [Ca2+]i. The CGRP-induced vasodilation was antagonized by CGRP8-37 (KDB = 2 mM). The K+-channel blockers iberiotoxin and glibenclamide partially prevented the CGRP- or forskolin-induced vasodilations but failed to reverse these vasodilations. These results demonstrate that CGRP is present in perivascular nerves and causes a vasodilation of the ET1-preconstricted SMA. The data suggest that this vasodilation is mediated by an increase in the cytosolic cAMP concentration, a transient activation of iberiotoxin-sensitive BK and glibenclamide-sensitive KATP K+ channels, a transient decrease in the [Ca2+]i and a long-lasting Ca2+ desensitization.  相似文献   

17.
In previous studies, mutant clones (designated Y1DR) were isolated that resisted ACTH-induced homologous desensitization of adenylyl cyclase. The Y1DR mutation also conferred resistance to the homologous desensitization induced by agonist stimulation of transfected beta 2-adrenergic receptors. These observations suggested that ACTH and beta 2-adrenergic agonists homologously desensitized adenylyl cyclase in Y1 cells by a common mechanism. In the present study, parental Y1 cells (Y1DS) and the Y1DR mutant were transfected with the gene encoding the human dopamine D1 receptor and examined for regulation of adenylyl cyclase by dopaminergic agonists. Transformants were isolated from both cell lines and shown to respond to dopamine agonists with increases in adenylyl cyclase activity. Treatment of the Y1DS transformants with ACTH promoted a rapid, homologous desensitization of adenylyl cyclase and had little effect on the responses to dopamine or NaF; treatment of Y1DS with dopaminergic agonists promoted a slower rate of heterologous desensitization that diminished responsiveness of the adenylyl cyclase system to dopamine, ACTH, and NaF. Y1DR cells transfected with the dopamine D1 receptor were resistant to the heterologous desensitization of adenylyl cyclase induced by dopaminergic agonists. These latter observations suggest that the pathways of homologous desensitization and heterologous desensitization converge at a common point in the desensitization pathway defined by the DR mutation in Y1 cells.  相似文献   

18.
The diterpene forskolin maximally stimulated bovine adrenal cortex adenylate cyclase activity 9-fold with a concentration producing half-maximum effect (ED50) of about 4 microM. The effects of forskolin and the fully active corticotropin fragment ACTH (I 24) were additive over nearly the whole range of concentration of both effectors, indicating separate and independent mechanisms of action. By contrast, 10 mM NaF blocked forskolin action in the nanomolar range of the diterpene concentration, while it allowed a partial stimulation by forskolin in the micromolar range. NaF thus reveals a heterogeneity of forskolin action in the adrenal cortex plasma membranes. Moreover, our data suggest that ACTH and NaF activation effects, both mediated by the stimulatory regulatory protein Gs, proceed through different mechanisms.  相似文献   

19.
In skeletal muscles, calcitonin gene-related peptide (CGRP) released from motor nerve terminals and humoral catecholamines stimulate adenylate cyclase (AC) and enhance muscle contraction. The effects of denervation and treatment with reserpine on twitch contraction and the AC system in rat diaphragm were investigated. The basal levels of twitch contraction and AC activity of the diaphragm of rats were both increased 2 weeks after phrenic nerve denervation but were not altered by treatment with reserpine. Reserpine treatment provoked supersensitivity of AC to isoproterenol, without affecting the response to CGRP. On the other hand, denervation decreased the activation of AC and enhancement of twitch contraction by CGRP, without affecting the responses to isoproterenol. These data suggest that denervation causes up-regulation of AC as a result of loss of CGRP release from nerve terminal and that depletion of catecholamines by reserpine treatment supersensitizes the responses at the beta-adrenoceptor level. Thus, nervous and humoral factors regulate the AC system in striated muscle by different mechanisms.  相似文献   

20.
Neurobiological actions of ethanol have been linked to perturbations in cyclic AMP (cAMP)-dependent signaling processes. Chronic ethanol exposure leads to desensitization of cAMP production in response to physiological ligands (heterologous desensitization). Ethanol-induced alterations in neuronal expression of G proteins G(s) and G(i) have been invoked as a cause of heterologous desensitization. However, effects of ethanol on G protein expression vary considerably among different experimental protocols, various brain regions and diverse neuronal cell types. Dynamic palmitoylation of G protein alpha subunits is critical for membrane localization and protein-protein interactions, and represents a regulatory feature of G protein function. We studied the effect of ethanol on G alpha(s) palmitoylation. In NG108-15 rat neuroblastoma x glioma hybrid cells, acute exposure to pharmacologically relevant concentrations of ethanol (25-100 mm) inhibited basal and prostaglandin E1-stimulated incorporation of palmitate into G alpha(s). Exposure of NG108-15 cells to ethanol for 72 h induced a shift in G alpha(s) to its non-palmitoylated state, coincident with an inhibition of prostaglandin E1-induced cAMP production. Both parameters were restored following 24 h of ethanol withdrawal. Chronic ethanol exposure also induced the depalmitoylation of G alpha(s) in human embryonic kidney (HEK)293 cells that overexpress wild-type G alpha(s) and caused heterologous desensitization of adenylyl cyclase. By contrast, HEK293 cells that express a non-palmitoylated mutant of G alpha(s) were insensitive to heterologous desensitization after chronic ethanol exposure. In summary, the findings identify a novel effect of ethanol on post-translational lipid modification of G alpha(s), and represent a mechanism by which ethanol might affect adenylyl cyclase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号