首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Foraging behaviours of the Australian sea lion (Neophoca cinerea) reflect an animal working hard to exploit benthic habitats. Lactating females demonstrate almost continuous diving, maximize bottom time, exhibit elevated field metabolism and frequently exceed their calculated aerobic dive limit. Given that larger animals have disproportionately greater diving capabilities, we wanted to examine how pups and juveniles forage successfully. 2. Time/depth recorders were deployed on pups, juveniles and adult females at Seal Bay Conservation Park, Kangaroo Island, South Australia. Ten different mother/pup pairs were equipped at three stages of development (6, 15 and 23 months) to record the diving behaviours of 51 (nine instruments failed) animals. 3. Dive depth and duration increased with age. However, development was slow. At 6 months, pups demonstrated minimal diving activity and the mean depth for 23-month-old juveniles was only 44 +/- 4 m, or 62% of adult mean depth. 4. Although pups and juveniles did not reach adult depths or durations, dive records for young sea lions indicate benthic diving with mean bottom times (2.0 +/- 0.2 min) similar to those of females (2.1 +/- 0.2 min). This was accomplished by spending higher proportions of each dive and total time at sea on or near the bottom than adults. Immature sea lions also spent a higher percentage of time at sea diving. 5. Juveniles may have to work harder because they are weaned before reaching full diving capability. For benthic foragers, reduced diving ability limits available foraging habitat. Furthermore, as juveniles appear to operate close to their physiological maximum, they would have a difficult time increasing foraging effort in response to reductions in prey. Although benthic prey are less influenced by seasonal fluctuations and oceanographic perturbations than epipelagic prey, demersal fishery trawls may impact juvenile survival by disrupting habitat and removing larger size classes of prey. These issues may be an important factor as to why the Australian sea lion population is currently at risk.  相似文献   

2.
Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals'' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods when prey availability is reduced.  相似文献   

3.
To be successful, marine predators must alter their foraging behavior in response to changes in their environment. To understand the impact and severity of environmental change on a population it is necessary to first describe typical foraging patterns and identify the underlying variability that exists in foraging behavior. Therefore, we characterized the at‐sea behavior of adult female California sea lions (n = 32) over three years (2003, 2004, and 2005) using satellite transmitters and time‐depth recorders and examined how foraging behavior varied among years. In all years, sea lions traveled on average 84.7 ± 11.1 km from the rookery during foraging trips that were 3.2 ± 0.3 d. Sea lions spent 42.7% ± 1.9% of their time at sea diving and displayed short (2.2 ± 0.2 min), shallow dives (58.5 ± 8.5 m). Among individuals, there was significant variation in both dive behavior and movement patterns, which was found in all years. Among years, differences were found in trip durations, distances traveled, and some dive variables (e.g., dive duration and bottom time) as sea lions faced moderate variability in their foraging habitat (increased sea‐surface temperatures, decreased upwelling, and potential decreased prey abundance). The flexibility we found in the foraging behavior of California sea lions may be a mechanism to cope with environmental variability among years and could be linked to the continuing growth of sea lion populations.  相似文献   

4.
Rapid development of foraging ability is critical for phocids. In northern elephant seals Mirounga angustirostris , juvenile survivorship is low compared with adults and foraging difficulties are potentially associated with increased mortality. At Año Nuevo, California, foraging behavior of nine juvenile females during their third foraging migration and five juvenile females on their fourth foraging migration were documented using a variety of commercially available and custom time depth recorders. Foraging success, diving ability, time at depth, bouts of behavior and body composition changes were compared between trips to sea. There were no significant differences in foraging success measured as mass gain between the third and fourth trips to sea. There were differences in how energy was deposited between lean and adipose tissue compartments. Diving ability developed between trips to sea, reflected in significant increases in depth, dive duration and bottom time. Development also occurred within trips to sea. Depth, dive duration and bottom time increased with time at sea. Aerobic capacity appears to increase between the third and fourth trip, with a significantly increased percentage of total time submerged and a significantly lower diving rate. All juveniles on the fourth trip and four out of nine juveniles on the third trip followed marked diel patterns, foraging deep during the day and shallow at night. Like adults, juveniles appeared to stay primarily aerobic with surface intervals independent of dive durations. These results confirm that female juvenile northern elephant seals undergo important developmental changes in foraging behavior between the third and fourth trip, but these changes do not significantly impact foraging success.  相似文献   

5.
Diving animals must endeavor to increase their dive depths and prolong the time they spend exploiting resources at depth. Results from captive and wild studies suggest that many diving animals extend their foraging bouts by decreasing their metabolisms while submerged. We measured metabolic rates of Steller sea lions (Eumetopias jubatus) trained to dive to depth in the open ocean to investigate the relationships between diving behaviour and the energetic costs of diving. We also constructed a general linear model to predict the oxygen consumption of sea lions diving in the wild. The resultant model suggests that swimming distance and depth of dives significantly influence the oxygen consumption of diving Steller sea lions. The predictive power of the model was tested using a cross-validation approach, whereby models reconstructed using data from pairs of sea lions were found to accurately predict the oxygen consumption of the third diving animal. Predicted oxygen consumption during dives to depth ranged from 3.37 L min− 1 at 10 m, to 1.40 L min− 1 at 300 m over a standardized swimming distance of 600 m. This equated to an estimated metabolic rate of 97.54 and 40.52 MJ day− 1, and an estimated daily feeding requirement of 18.92 and 7.96 kg day− 1 for dives between 10 and 300 m, respectively. The model thereby provides information on the potential energetic consequences that alterations in foraging strategies due to changes in prey availability could have on wild populations of sea lions.  相似文献   

6.
Two key factors influence the diving and hence foraging ability of marine mammals: increased oxygen stores prolong aerobic metabolism and decreased metabolism slows rate of fuel consumption. In young animals, foraging ability may be physiologically limited due to low total body oxygen stores and high mass specific metabolic rates. To examine the development of dive physiology in Steller sea lions, total body oxygen stores were measured in animals from 1 to 29 months of age and used to estimate aerobic dive limit (ADL). Blood oxygen stores were determined by measuring hematocrit, hemoglobin, and plasma volume, while muscle oxygen stores were determined by measuring myoglobin concentration and total muscle mass. Around 2 years of age, juveniles attained mass specific total body oxygen stores that were similar to those of adult females; however, their estimated ADL remained less than that of adults, most likely due to their smaller size and higher mass specific metabolic rates. These findings indicate that juvenile Steller sea lion oxygen stores remain immature for more than a year, and therefore may constrain dive behavior during the transition to nutritional independence.  相似文献   

7.
The early life stage of long-lived species is critical to the viability of population, but is poorly understood. Longitudinal studies are needed to test whether juveniles are less efficient foragers than adults as has been hypothesized. We measured changes in the diving behaviour of 17 one-year-old king penguins Aptenodytes patagonicus at Crozet Islands (subantartic archipelago) during their first months at sea, using miniaturized tags that transmitted diving activity in real time. We also equipped five non-breeder adults with the same tags for comparison. The data on foraging performance revealed two groups of juveniles. The first group made shallower and shorter dives that may be indicative of early mortality while the second group progressively increased their diving depths and durations, and survived the first months at sea. This surviving group of juveniles required the same recovery durations as adults, but typically performed shallower and shorter dives. There is thereby a relationship between improved diving behaviour and survival in young penguins. This long period of improving diving performance in the juvenile life stage is potentially a critical period for the survival of deep avian divers and may have implications for their ability to adapt to environmental change.  相似文献   

8.
Intrapopulational polymorphism in habitat use is widely reported in many animal species. The phenomenon has recently also been recognized in adult female loggerhead sea turtles Caretta caretta , with small females tending to inhabit oceanic areas (where water depths are >200 m) while presumably feeding pelagically and large females tending to inhabit neritic areas (where depths are <200 m) while presumably feeding benthically. In this study, dive recording satellite telemetry units were used to verify their foraging and diving behaviours in these habitats. Two females that nested on Yakushima Island, Japan, were tracked for 124 and 197 days. The small female wandered in the oceanic Pacific, and spent most of the time at 0–25 m depths regardless of day or night, implying that she foraged pelagically at the surface and shallow depths. Her mean dive durations were significantly longer at night than during the day. The large female moved into the neritic East China Sea, and spent most of the time over the continental shelf at 100–150 m depths during the day and at 0–25 m depths at night, suggesting that she alternated between diurnal benthic foraging and nocturnal resting within the depths where she could attain neutral buoyancy. Her mean dive durations were not significantly different between day and night. The increase in dive duration for both turtles coincided with a seasonal decrease in water temperature. The small female sometimes showed midwater dormancy at 0–25 m depths with a duration of >5 h that was in contrast with bottom dormancy by sea turtles inhabiting other regions. The diving behaviours observed during this study were consistent with their estimated main feeding habits, which demonstrated resource polymorphism in a marine reptile.  相似文献   

9.
The diving capacity of marine mammals is typically defined by the aerobic dive limit (ADL) which, in lieu of direct measurements, can be calculated (cADL) from total body oxygen stores (TBO) and diving metabolic rate (DMR). To estimate cADL, we measured blood oxygen stores, and combined this with diving oxygen consumption rates (VO2) recorded from 4 trained Steller sea lions diving in the open ocean to depths of 10 or 40 m. We also examined the effect of diving exercise on O2 stores by comparing blood O2 stores of our diving animals to non-diving individuals at an aquarium. Mass-specific blood volume of the non-diving individuals was higher in the winter than in summer, but there was no overall difference in blood O2 stores between the diving and non-diving groups. Estimated TBO (35.9 ml O2 kg?1) was slightly lower than previously reported for Steller sea lions and other Otariids. Calculated ADL was 3.0 min (based on an average DMR of 2.24 L O2 min?1) and was significantly shorter than the average 4.4 min dives our study animals performed when making single long dives—but was similar to the times recorded during diving bouts (a series of 4 dives followed by a recovery period on the surface), as well as the dive times of wild animals. Our study is the first to estimate cADL based on direct measures of VO2 and blood oxygen stores for an Otariid and indicates they have a much shorter ADL than previously thought.  相似文献   

10.
The diving ability of marine mammals is a function of how they use and store oxygen and the physiological control of ventilation, which is in turn dependent on the accumulation of CO2. To assess the influence of CO2 on physiological control of dive behaviour, we tested how increasing levels of inspired CO2 (hypercarbia) and decreasing inspired O2 (hypoxia) affected the diving metabolic rate, submergence times, and dive recovery times (time to replenish O2 stores and eliminate CO2) of freely diving Steller sea lions. We also measured changes in breathing frequency of diving and non-diving individuals. Our findings show that hypercarbia increased breathing frequency (as low as 2 % CO2), but did not affect metabolic rate, or the duration of dives or surface intervals (up to 3 % CO2). Changes in breathing rates indicated respiratory drive was altered by hypercarbia at rest, but blood CO2 levels remained below the threshold that would alter normal dive behaviour. It took the sea lions longer to remove accumulated CO2 than it did for them to replenish their O2 stores following dives (whether breathing ambient air, hypercarbia, or hypoxia). This difference between O2 and CO2 recovery times grew with increasing dive durations, increasing hypercarbia, and was greater for bout dives, suggesting there could be a build-up of CO2 load with repeated dives. Although we saw no evidence of CO2 limiting dive behaviour, the longer time required to remove CO2 may eventually exhibit control over the overall time they can spend in apnoea and overall foraging duration.  相似文献   

11.
Diving animals offer a unique opportunity to study the importance of physiological constraint in their everyday behaviors. An important component of the physiological capability of any diving animal is its aerobic dive limit (ADL). The ADL has only been measured in a few species. The goal of this study was to estimate the aerobic dive limit from measurements of body oxygen stores and at sea metabolism. This calculated ADL (cADL) was then compared to measurements of diving behavior of individual animals of three species of otariids, the Antarctic fur seal, Arctocephalus gazella, the Australian sea lion, Neophoca cinerea, and the New Zealand sea lion, Phocarctos hookeri. Antarctic fur seals dove well within the cADL. In contrast, many individuals of both sea lion species exceeded the cADL, some by significant amounts. Australian sea lions typically dove 1.4 times longer than the cADL, while New Zealand sea lions on average dove 1.5 times longer than the cADL. The tendency to exceed the cADL was correlated with the dive pattern of individual animals. In both Antarctic Fur Seals and Australian sea lions, deeper diving females made longer dives that approached or exceeded the cADL (P<0.01, r(2)=0.54). Australian and New Zealand sea lions with longer bottom times also exceeded the cADL to a greater degree. The two sea lions forage on the benthos while the fur seals feed shallow in the water column. It appears that benthic foraging requires these animals to reach or exceed their aerobic dive limit.  相似文献   

12.
Sexual segregation (sex differences in spatial organisation and resource use) is observed in a large range of taxa. Investigating causes for sexual segregation is vital for understanding population dynamics and has important conservation implications, as sex differences in foraging ecology may affect vulnerability to area-specific human activities. Although behavioural ecologists have proposed numerous hypotheses for this phenomenon, the underlying causes of sexual segregation are poorly understood. We examined the size-dimorphism and niche divergence hypotheses as potential explanations for sexual segregation in the New Zealand (NZ) sea lion (Phocarctos hookeri), a nationally critical, declining species impacted by trawl fisheries. We used satellite telemetry and linear mixed effects models to investigate sex differences in the foraging ranges of juvenile NZ sea lions. Male trip distances and durations were almost twice as long as female trips, with males foraging over the Auckland Island shelf and in further locations than females. Sex was the most important variable in trip distance, maximum distance travelled from study site, foraging cycle duration and percent time at sea whereas mass and age had small effects on these characteristics. Our findings support the predictions of the niche divergence hypothesis, which suggests that sexual segregation acts to decrease intraspecific resource competition. As a consequence of sexual segregation in foraging ranges, female foraging grounds had proportionally double the overlap with fisheries operations than males. This distribution exposes female juvenile NZ sea lions to a greater risk of resource competition and bycatch from fisheries than males, which can result in higher female mortality. Such sex-biased mortality could impact population dynamics, because female population decline can lead to decreased population fecundity. Thus, effective conservation and management strategies must take into account sex differences in foraging behaviour, as well as differential threat-risk to external impacts such as fisheries bycatch.  相似文献   

13.
Accurate estimates of diving metabolic rate are central to assessing the energy needs of marine mammals. To circumvent some of the limitations inherent with conducting energy studies in both the wild and captivity, we measured diving oxygen consumption of two trained Steller sea lions ( Eumetopias jubatus ) in the open ocean. The animals dived to predetermined depths (5–30 m) for controlled periods of time (50–200 s). Rates of oxygen consumption were measured using open-circuit respirometry before and after each dive. Mean resting rates of oxygen consumption prior to the dives were 1.34 (±0.18) and 1.95 (±0.19) liter/min for individual sea lions. Mean rates of oxygen consumption during the dives were 0.71 (±0.24) and 1.10 (±0.39) liter/min, respectively. Overall, rates of oxygen consumption during dives were significantly lower (45% and 41%) than the corresponding rates measured before dives. These results provide the first estimates of diving oxygen consumption rate for Steller sea lions and show that this species can exhibit a marked decrease in oxygen consumption relative to surface rates while submerged. This has important consequences in the evaluation of physiological limitations associated with diving such as dive duration and subsequent interpretations of diving behavior in the wild.  相似文献   

14.
Ontogeny of diving and foraging behavior in marine top predators is poorly understood despite its importance in population recruitment. This lack of knowledge is partly due to the difficulties of monitoring juveniles in the wild, which is linked to high mortality early in life. Pinnipeds are good models for studying the development of foraging behaviors because juveniles are large enough to robustly carry tracking devices for many months. Moreover, parental assistance is absent after a juvenile departs for its first foraging trip, minimizing confounding effects of parental input on the development of foraging skills. In this study, we tracked 20 newly weaned juvenile southern elephant seals from Kerguelen Islands for up to 338 days during their first trip at sea following weaning. We used a new generation of satellite relay tags, which allow for the transmission of dive, accelerometer, and location data. We also monitored, at the same time, nine adult females from the colony during their post‐breeding trips, in order to compare diving and foraging behaviors. Juveniles showed a gradual improvement through time in their foraging skills. Like adults females, they remarkably adjusted their swimming effort according to temporal changes in buoyancy (i.e., a proxy of their body condition). They also did not appear to exceed their aerobic physiological diving limits, although dives were constrained by their smaller size compared to adults. Changes in buoyancy appeared to also influence their decision to either keep foraging or return to land, alongside the duration of their haul outs and choice of foraging habitat (oceanic vs. plateau). Further studies are thus needed to better understand how patterns in juveniles survival, and therefore elephant seal populations, might be affected by their changes in foraging skills and changes in their environmental conditions.  相似文献   

15.
This study tracked the movements of Australian sea lion ( Neophoca cinerea ) pups, juveniles, and adult females to identify home ranges and determine if young sea lions accompanied their mothers at sea. Satellite tags were deployed on nine 15-mo-old pups, nine 23-mo-old juveniles, and twenty-nine adult female Australian sea lions at Seal Bay Conservation Park, Kangaroo Island, South Australia. Females did not travel with their offspring at sea, suggesting young Australian sea lions learn foraging behaviors independently. Although home ranges increased with age, 23-mo-old juveniles had not developed adult movement capacity and their range was only 40.6% of the adult range. Juveniles traveled shorter distances (34.8 ± 5.5 km) at slower speeds (2.0 ± 0.3 km/h) than adults (67.9 ± 3.5 km and 3.9 ± 0.3 km/h). Young sea lions also stayed in shallower waters; sea floor depths of mean locations were 48 ± 7 m for juveniles and 74 ± 2 m for females. Restricted to shallow coastal waters, pups and juveniles are more likely to be disproportionately impacted by human activities. With limited available foraging habitat, young Australian sea lions appear particularly vulnerable to environmental alterations resulting from fisheries or climate change.  相似文献   

16.
The foraging behaviour of Guillemots Uria aalge at sea was compared between 2 years of radically different food abundance. Radio telemetry was used to determine foraging locations and diving patterns. In the poor compared with the good food year, foraging trips were much longer, the birds foraged more than six times further from their breeding sites, they spent over five times as much time diving when at sea and their estimated energy expenditure was twice as great. Time spent foraging in the poor food year was at the expense of time spent sitting at the colony. The duration of a foraging trip was a poor indicator of distance travelled but a good indicator of the amount of time spent diving. Mean dive durations, surface pause durations and interbout periods did not differ between years, but individuals made more than four times as many dives per diving bout in the poor food year. Surface pause lengths did not vary with water depth in either year. In the poor food year, birds made shorter surface pauses for a dive of a given duration than in the good food year, possibly accepting a lactic acid debt in order to maximize searching time, The duration of the interbout period was positively related to the number of dives in the previous bout, and dives tended to get shorter in long diving sequences, suggesting possible exhaustion effects. These data demonstrate that breeding Guillemots have the capacity to adjust their foraging behaviour and time budgets in response to changes in food abundance, but this flexibility was not sufficient to compensate fully for the very low food abundance experienced by birds in this study.  相似文献   

17.
1. Identifying the spatial scales at which top marine predators forage is important for understanding oceanic ecosystems. Several methods quantify how individuals concentrate their search effort along a given path. Among these, First-Passage Time (FPT) analysis is particularly useful to identify transitions in movement patterns (e.g. between searching and feeding). This method has mainly been applied to terrestrial animals or flying seabirds that have little or no vertical component to their foraging, so we examined the differences between classic FPT and a modification of this approach using the time spent at the bottom of a dive for characterizing the foraging activity of a diving predator: the southern elephant seal. 2. Satellite relayed data loggers were deployed on 20 individuals during three successive summers at the Kerguelen Islands, providing a total of 72 978 dives from eight juvenile males and nine adult females. 3. Spatial scales identified using the time spent at the bottom of a dive ( = 68.2 +/- 42.1 km) were smaller than those obtained by the classic FPT analysis ( = 104.7 +/- 67.3 km). Moreover, foraging areas identified using the new approach clearly overlapped areas where individuals increased their body condition, indicating that it accurately reflected the foraging activity of the seals. 4. These results suggest that incorporating the vertical dimension into FPT provides a different result to the surface path alone. Close to the Antarctic continent, within the pack-ice, sinuosity of the path could be explained by a high sea-ice concentration (restricting elephant seal movements), and was not necessarily related to foraging activity. 5. Our approach distinguished between actual foraging activity and changes in behaviour induced by the physical environment like sea ice, and could be applied to other diving predators. Inclusion of diving parameters appears to be essential to identify the spatial scale of foraging areas of diving animals.  相似文献   

18.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

19.
The diving behaviour of 15 dugongs (Dugong dugon) was documented using time-depth recorders (TDRs), which logged a total of 39,507 dives. The TDRs were deployed on dugongs caught at three study sites in northern Australia: Shark Bay, the Gulf of Carpentaria and Shoalwater Bay. The average time for which the dive data were collected per dugong was 10.4±1.1 (S.E.) days. Overall, these dugongs spent 47% of their daily activities within 1.5 m of the sea surface and 72% less than 3 m from the sea surface. Their mean maximum dive depth was 4.8±0.4 m (S.E.), mean dive duration was 2.7±0.17 min and the number of dives per hour averaged 11.8±1.2. The maximum dive depth recorded was 20.5 m; the maximum dive time in water >1.5 m deep was 12.3 min. The effects of dugong sex, location (study site), time of day and tidal cycle on diving rates (dives per hour), mean maximum dive depths, durations of dives, and time spent ≤1.5 m from the surface were investigated using weighted split-plot analysis of variance. The dugongs exhibited substantial interindividual variation in all dive parameters. The interaction between location and time of day was significant for diving rates, mean maximum dive depths and time spent within 1.5 m of the surface. In all these cases, there was substantial variation among individuals within locations among times of day. Thus, it was the variation among individuals that dominated all other effects. Dives were categorised into five types based on the shape of the time-depth profile. Of these, 67% of dives were interpreted as feeding dives (square and U-shaped), 8% as exploratory dives (V-shaped), 22% as travelling dives (shallow-erratic) and 3% as shallow resting dives. There was systematic variation in the distribution of dive types among the factors examined. Most of this variation was among individuals, but this differed across both time of day and tidal state. Not surprisingly, there was a positive relationship between dive duration and depth and a negative relationship between the number of dives per hour and the time spent within 1.5 m of the surface after a dive.  相似文献   

20.
Ecologists often describe the foraging ecology of a species as a whole, treating conspecific individuals as ecologically equal. However, individual specialization has potentially important ecological, evolutionary and conservation implications. Foraging studies are usually based on the foraging behaviours of individuals sampled in only 1 year. In this study, the site fidelity of foraging locations of nine female New Zealand sea lions (NZ sea lions Phocarctos hookeri ) from Enderby Island, Auckland Islands, were investigated by repeating their satellite tracking between 1 and 4 years after they were first tracked. Females were monitored during early lactation in the austral summers of 2001–2005. The kernel ranges of females' foraging satellite location concentrations overlapped consistently within and between years. As predicted for benthic foragers, NZ sea lions show low individual variability in foraging behaviour and greater specialization. It is important to understand the spatial and temporal limitations on an individual's foraging-site fidelity, because they can affect a species' ability to cope with environmental changes and anthropogenic impacts. This has significant implications for NZ sea lions management and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号