首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional state of external respiration and the features of its regulation in healthy persons were studied under conditions of microgravity simulated using dry immersion. The lung volume, the ratio of thoracic and abdominal components during quiet breathing and performing various respiratory maneuvers, as well as the parameters that characterize the regulation of breathing (the duration of breath holding and the ability to voluntarily control respiratory movements), were recorded during the baseline period, on days 2 and 4 of dry immersion, and after the end of the dry immersion. It has been shown that the breathing pattern did not significantly change under conditions of dry immersion compared to the baseline period; however, the inspiratory reserve volume increased (p < 0.05), while the expiratory reserve volume decreased (p < 0.01). Dry immersion did not alter pulmonary ventilation, yet most of the subjects trended toward an increase in the contribution of the abdominal component of breathing movements during quiet breathing and demonstrated a statistically significant increase in this parameter during the lung vital capacity maneuver. The durations of the inspiratory and expiratory maximal breath holding under conditions of immersion did not differ from the background values. During the immersion, the accuracy of voluntary control of breathing increased. We believe that immersion, similar to microgravity, leads to changes in the reserve lung volume, which are partly because of changes in the body position; changes in relative contributions of the thoracic and abdominal components in the breathing movements; and changes in voluntary breath regulation.  相似文献   

2.
The effect of low proprioceptive, tactile, and support afferentation on visual-manual tracking was determined using a five-day horizontal dry immersion, which provided support deprivation, as well as minimization of muscle activity and proprioceptive afferentation, simulating the physiological effects of microgravity. Hand-eye motor coordination was studied in the 13 subjects participating in the experiment with five-day dry immersion who tracked the jumpy and smooth movements of a point visual stimulus (linear and pendulum-like; horizontal and vertical; circular, clockwise and counterclockwise). Ocular movements were recorded using binocular electrooculography; and manual motions were recorded using a joystick with a biological visual feedback, when one of the two stimuli on the screen showed the current joystick tilt. Computerized stimulation was provided using virtual reality goggles. The following parameters were evaluated: the latent and total reaction time; the amplitudes and velocities of the eye and hand movements; and the coefficients of effectiveness (amplitude ratio) and the gain (velocity ratio). The examinations were performed before immersion, after 3 h of immersion, on days 3 and 5 of immersion, during the first hours after the termination of immersion, and three days after the immersion (in all subjects); and on days 5–7 after the immersion (in four subjects). It was shown that support deprivation and minimization of proprioceptive afferentation affected ocular tracking to a larger extent than the accuracy of manual movements following the visual stimulus. It was found that, in all subjects, manual tracking, which did not significantly change during the test sessions, was more accurate than visual tracking; in contrast, the accuracy of visual tracking changed noticeably both in the course of dry immersion and after its termination.  相似文献   

3.
Six male volunteers for dry immersion (DI) simulating microgravity effects in the human body were subjects in the study on the evacuation function of the gastrointestinal tract (GIT). The investigation was aimed to evaluate liquid food evacuation from the stomach (the 13C-acetate test) and time of chymus orocecal transit (the H2-inulin test). The 13C-acetate test did not reveal changes in stomach evacuation activity after 4 days in DI. The H2-inulin test demonstrated shortening of the chymus’s transit along the small intestine and extension of chymus passage from the oleum to cecum. The subsequent reduction of inulin metabolism in the large intestine suggested inhibited passage of these GIT segments. The results showed that the stability of liquid evacuation from the stomach and acceleration of the chymus’s transit along the small intestine hinder evacuation of the large intestine content, which is the primary cause of the inhibition of the GIT evacuation activity during DI.  相似文献   

4.
The dynamic studies of the parameters of forced expiration under the conditions of a five-day dry immersion involved seven healthy male subjects aged 20 to 25 years. During forced expiration, spirometry tests were performed simultaneously with tracheal sounds being recorded by a microphone. A number of parameters, including the acoustic duration of the forced-expiration tracheal sounds, the lungs’ forced vital capacity, the 1-s forced expiration volume, the peak expiratory flow, and time of achieving the peak expiratory flow, were recorded before dry immersion, on days 1 and 4 of immersion, and the next day after the termination of immersion. There was a significant decrease (by 8.4%) in the peak expiratory flow on day 1 of immersion; however, by day 4 of immersion, the peak expiratory flow increased by 8.9%, reaching its baseline values. The lungs’ forced vital capacity and the forced expiration volume during 1 second, on the average, did not change throughout the experiment. There was a significant increase (by 17%) in the duration of the forced expiration tracheal sounds after the immersion, which suggests an increase in respiratory resistance and needs further studies. A moderate negative correlation between the duration of the forced expiration tracheal sounds and Gensler’s index (r = ?0.63) was found, whereas the correlation with other spirometry parameters was weak or absent.  相似文献   

5.
6.
The article describes the goals, objectives, and methods of an integrated experiment with five-day immersion performed in 2010.  相似文献   

7.
Polymorphonuclear leukocytes (PMNs) are important players in innate and acquired immunity. These cells accumulate at inflammatory sites and contribute to host defence, regulation of the inflammatory process, and also to tissue injury. One of the key components of PMNs is the heme-containing enzyme myeloperoxidase (MPO) that is stored in large amount in azurophilic granules of resting cells. Here we review the (patho)physiological role of MPO from the viewpoint of participation of PMNs in immune reactions. Myeloperoxidase is able to catalyse a wide range of one- and two-electron substrate oxidations. With special products, MPO contributes to apoptosis induction in PMNs and other cells, and, thus, to termination of inflammatory response. On the other hand, MPO released from necrotic cells promotes an inflammation by further recruitment of PMNs, and chemical modification of proteins and other tissue constituents. Myeloperoxidase is a fascinating, multifunctional, and challenging enzyme that hasn’t yet revealed all its secrets.  相似文献   

8.
To date little is known about catabolic NO-dependent signaling systems in human skeletal muscle during early stages of gravitational unloading. The goal of the study was to analyze signaling pathways that determine the initial development of proteolytic events in human soleus muscle during short-term gravitational unloading (simulated microgravity). Gravitational unloading was simulated by 3-day head-out dry immersion. Before and after the immersion the samples of soleus muscle were taken under local anesthesia, using biopsy technique. The content of desmin, IRS-1, phospho-AMPK, total and phospho-nNOS in soleus of 6 healthy men was determined using Western-blotting before and after the dry-immersion. Three days of the dry immersion resulted in a significant decrease in desmin, phospho-nNOS and phospho-AMPK as compared to the pre-immersion values. The results of the study suggest that proteolytic processes in human soleus at the early stage of gravitational unloading are associated with inactivation of nNOS. Reduction in AMPK phosphorylation could serve as a trigger event for the development of primary atrophic changes in skeletal muscle.  相似文献   

9.
10.
The mechanisms of innate immunity functioning--the first row of counteraction (resistance) to infectious agents are reviewed. A concept of pathogen associated molecular patterns--the unique prokaryotic conservative structures--as well as a concept of pattern-recognizing receptors of innate immunity cell recognizing the given bacterial patterns, are discussed. The data on molecular and genetic structures of both Toll-like- and NOD-receptors: the important compounds of pattern-recognizing receptors, the main signaling pathways from receptor to cell genome activation as well as the principles of immune cell activation by pathogen associated molecular patterns are submitted.  相似文献   

11.
Atrophy of skeletal muscle is a response that is considered as the most consistent under conditions of real and simulated weightlessness. Microgravity is transformed in the motor system into a number of factors, the most important of them are considered axial unloading and support unloading. The effects of support stimulus may be evaluated in studies under conditions of dry immersion (DI) which provides the equal distribution of the mechanical pressure (e.g. hydrostatic pressure) throughout the surface of the body. Thus the deprivation of the gradient of the mechanical pressure simulates the supportless conditions. The study was aimed to test if the support unloading simulated in dry immersion induces not only functional but also structural alterations in human postural muscles.  相似文献   

12.
The study of the adaptive immunity system of six test subjects volunteered for a 105-day isolation and confinement in an artificial environment showed activation of the immune system and overstrain and depletion of its functional reserve. Significant differences in the adaptability of the immune system of the test subjects indicate individual susceptibility to disorders in immunological reactivity.  相似文献   

13.
14.
Dendritic cells (DCs) are specialized, bone marrow-derived leukocytes that are critical to the development of immunity. Investigators have emphasized the role of DCs in initiating adaptive or acquired MHC-restricted, Ag-specific T cell responses. More recent evidence supports important roles for DCs in the onset of innate immunity and peripheral tolerance. Progress in the generation of DCs from defined hemopoietic precursors in vitro has revealed the heterogeneity of these APCs and their attendant divisions of labor. This review will address these developments in an attempt to integrate the activities of different DCs in coordinating innate and adaptive immunity.  相似文献   

15.
Ultrasound investigations (USI) of the liver, organs and vessels of the gastroduodenal area, as well as blood biochemistry, were performed in two groups of male volunteers on the 4th day of their stay in the conditions of “dry” immersion with and without the application of countermeasures, including the support load imitator (SLI) or high-frequency electromyostimulation. Using 13С-methacetin breath test (13C-MBT), two other groups were investigated for the effect of immersion on the detoxification activity and metabolic capacity of the liver and the efficacy of SLI. The performed USIs have identified deceleration in the hepatic venous flow and the signs of plethora in the abdominal venous system. Elevated blood levels were detected in pepsinogen, pancreatic amylase, bilirubin total, due to its unconjugated fraction, insulin, and C-peptide. The 13C-MBT has shown a slowdown in the rate of 13C-methacetin inactivation and a reduction in the hepatic metabolic capacity. The application of countermeasures during the immersion has not affected the ultrasound patterns of the hemodynamic rearrangement in both the liver and the abdomen. High frequency electromyostimulation during the immersion has neutralized the changes in all biochemical indicators except C-peptide, while the application of SLI has led to the restoration of only pepsinogen and amylase to the initial values. In addition, the use of SLI during the immersion counteracted the reduction in the 13C-methacetin inactivation rate and did not substantially affect the reduction in the metabolic capacity of the liver.  相似文献   

16.
There is a need for genetic markers or biomarkers that can predict resistance towards a wide range of infectious diseases, especially within a health environment typical of commercial farms. Such markers also need to be heritable under these conditions and ideally correlate with commercial performance traits. In this study, we estimated the heritabilities of a wide range of immune traits, as potential biomarkers, and measured their relationship with performance within both specific pathogen-free (SPF) and non-SPF environments. Immune traits were measured in 674 SPF pigs and 606 non-SPF pigs, which were subsets of the populations for which we had performance measurements (average daily gain), viz. 1549 SPF pigs and 1093 non-SPF pigs. Immune traits measured included total and differential white blood cell counts, peripheral blood mononuclear leucocyte (PBML) subsets (CD4+ cells, total CD8α+ cells, classical CD8αβ+ cells, CD11R1+ cells (CD8α+ and CD8α-), B cells, monocytes and CD16+ cells) and acute phase proteins (alpha-1 acid glycoprotein (AGP), haptoglobin, C-reactive protein (CRP) and transthyretin). Nearly all traits tested were heritable regardless of health status, although the heritability estimate for average daily gain was lower under non-SPF conditions. There were also negative genetic correlations between performance and the following immune traits: CD11R1+ cells, monocytes and the acute phase protein AGP. The strength of the association between performance and AGP was not affected by health status. However, negative genetic correlations were only apparent between performance and monocytes under SPF conditions and between performance and CD11R1+ cells under non-SPF conditions. Although we cannot infer causality in these relationships, these results suggest a role for using some immune traits, particularly CD11R1+ cells or AGP concentrations, as predictors of pig performance under the lower health status conditions associated with commercial farms.  相似文献   

17.
dsRNA-mediated innate immunity of epidermal keratinocytes   总被引:6,自引:0,他引:6  
MIP-1alpha, a CC chemokine, recruits monocytes, natural killer cells, lymphocytes, and neutrophils, and plays a critical role in viral infection. Since, the lesional epidermis of herpes zoster expressed MIP-1alpha, we hypothesized that keratinocytes produce MIP-1alpha in response to virus-associated dsRNA via TLR3. To investigate this, we examined cultured human keratinocytes for MIP-1alpha production induced by poly(I:C), a TLR3 ligand. Poly(I:C) treatment induced MIP-1alpha production, interestingly, poly(I:C)-induced IFN-alpha and -beta production preceded MIP-1alpha production. A neutralizing antibody for IFN-beta significantly inhibited the poly(I:C)-induced MIP-1alpha production indicating that MIP-1alpha production is via IFN-beta. IFN-alpha priming enhanced TLR3 expression and MIP-1alpha production in poly(I:C)-treated keratinocytes. This suggests that IFN-alpha enhanced the TLR3 expression and reinforced the response of keratinocytes to poly(I:C), which resulted in an increase in MIP-1alpha production. In conclusion, normal human keratinocytes produce MIP-1alpha in response to dsRNA via TLR3, and this production is regulated by IFN-alpha/beta.  相似文献   

18.
Due to the exposure of insects to various sources of pathogens during different stages of their life cycle and their vulnerability towards subsequent infections, moreover lack of morality issues, economical breeding and short‐term‐life cycle, insect's immunity has been considered as a high‐potential candidate to study underlying mechanisms of defense responses against all sort of invaders, as well as pandemic diseases. Currently, the world is enduring monumental pressure to meet global food production demands. One viable option would be to mass rear edible insects, such as coleopteran meal worm Tenebrio molitor, which is thought to be a substantial protein source. In addition, using antimicrobial peptides as an alternative for antibiotic source against multidrug‐resistant pathogens, makes insects a valuable option to solve this health issue. As a consequence, sufficient knowledge of insect immunity will lead us to reach advanced diagnostic and treatment technologies. To accomplish these goals, crucial importance of identification and functional characterization of the main signaling pathways, such as Toll and immune deficiency (IMD), prompted us to review the mechanisms of the signaling pathways involved in immune response in well‐known insect models.  相似文献   

19.
Innate immunity has evolved as a first line defense against invading pathogens. Cellular and humoral elements of the innate immune system detect infectious parasites, initiate inflammatory resistance reactions and finally contribute to the elimination of the invaders. Repeated attacks by pathogenic agents induce adaptive responses of the innate immune system. Typically, reapplication of pathogens provokes tolerance of the affected organism. However, also stimulatory effects of primary infections on subsequent innate immune responses have been observed. The present overview touches an undervalued aspect in the innate immune response: Its pronounced dependency on pathogen load. In addition to localization and timing of innate immune responses the pathogen dose dependency might be considered as a “fifth dimension of innate immunity”. Experimental results and literature data are presented proposing a hormetic reaction pattern of innate immune cells depending on the dose of pathogens.  相似文献   

20.
Collectins, present in plasma and on mucosal surfaces, are humoral molecules of the innate immune system. They were discovered a hundred years ago in 1906 as the first association of an animal lectin with the immune system. They are a family of calcium-dependent lectins that recognize pathogen-associated molecular patterns. They share a similar modular domain architecture consisting of four regions; a cysteine-rich N-terminal domain, a collagen-like region, an alpha-helical neck domain and a C-terminal carbohydrate recognition domain. There have been eight collectins members defined so far, of which, MBL, SP-A and SP-D are the most characterized. Collectins represent the first line of host defense. Upon recognition of the infectious agents, collectins put into action effector mechanisms like direct opsonization, neutralization, agglutination, complement activation and phagocytosis to curb the microbial growth. In addition, they also modulate inflammatory and allergic responses and apoptotic cell clearance. These functions limit infection and subsequently modulate the adaptive immune responses. The role of collectins, their structure, function, characteristics and clinical significance are reviewed in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号