首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

2.
Fluid endocytosis in rat liver parenchymal (hepatocytes) and non-parenchymal cells was studied by measuring uptake of [125I]polyvinylpyrrolidone (PVP). Radioactive sucrose preparations were also tested but turned out to be unsuitable because of impurities of radioactive glucose and fructose. Fluid endocytosis was temperature dependent without any transition temperature. The rate of endocytosis was inhibited by inhibitors of the glycolytic and the respiratory pathway. Colchicine, but not cytochalasin B, inhibited the uptake of [125I]PVP in hepatocytes. Therefore, intact microtubuli, but not microfilaments may be required for normal rate of fluid endocytosis in hepatocytes. Colchicine reduced the rate of fluid endocytosis in the non-parenchymal liver cells. Subcellular fractionation by isopycnic centrifugation in sucrose gradients indicated that [125I]PVP taken up by the hepatocytes accumulated in the lysosomes. The rate of uptake expressed as volume of fluid internalized per unit time (endocytic index) was calculated to 0.08 μl/h/106 cells for hepatocytes and 0.07 μl/h/106 cells for non-parenchymal liver cells.  相似文献   

3.
The uptake of a fluorescent phallotoxin (tetramethylrhodaminyl-phalloidin) into rat hepatocytes has been studied. The experiments were performed in vitro, using freshly isolated hepatocyte suspensions or monolayers of hepatocytes cultured for up to 5 days, as well as in vivo, by investigating cryostat sections of a liver from an animal injected with the labelled toxin. In vitro, in freshly isolated hepatocytes, a staining of actin was observed. On the contrary, if the hepatocytes were cultured, only fluorescent endocytotic vesicles were found accumulated around the nucleus, and remaining in the cells unchanged for several days. In vivo, both fluorescent patterns were observed, often in one and the same cell. The endocytotic vesicles of rhodaminylphalloidin looked very similar to those obtained with fluoresceinyl-concanavalin A. navalin A. We conclude that in all systems the fluorescent phallotoxin enters the hepatocytes by endocytosis. However, in the freshly isolated cells the endocytotic vesicles apparently undergo some kind of processing with release of the toxin and subsequent staining of cellular actin, while in cultured hepatocytes the endocytotic vesicles persist unprocessed.  相似文献   

4.
Two alternative uptake mechanisms for phallotoxins by liver cells are debated: carrier-mediated uptake and receptor-mediated endocytosis. We have compared the properties of hepatocellular uptake of the phallotoxins, phalloidin and demethylphalloin, with the uptake of cholate as a substrate for carrier-mediated uptake and compared with iodinated bovine lactoperoxidase or iodinated horseradish peroxidase, as the latter are known to be taken up by vesicular endocytosis. Uptake of phallotoxins and [14C]cholate uptake into isolated hepatocytes is independent of extracellular calcium but inhibited by A23187 or by monensin. Uptake of bovine lactoperoxidase strictly depends on external Ca2+, was insensitive to A23197 and was not inhibited by monensin. No mutual uptake inhibition between phalloidin or cholate and peroxidases was seen, indicating independent permeation pathways in hepatocytes. However, high concentrations of cytochalasin B inhibited the uptake of either phalloidin, cholate or bovine lactoperoxidase. Horseradish peroxidase uptake, which was taken as an indicator for fluid pinocytosis, was low in isolated hepatocytes and could not account for the amount of phalloidin or cholate taken up. In cultured rat hepatocytes, uptake of phallotoxins decreased within 1 day to 10% of the uptake seen in freshly isolated hepatocytes. The results indicate different mechanisms for hepatocellular phallotoxin/bile-acid uptake and peroxidase internalization. As monolayer cultures of hepatocytes rapidly lost the carrier-mediated uptake of phallotoxins and bile acids, freshly isolated hepatocytes might be a more suitable experimental model than cultured cells for kinetic studies on this transport system.  相似文献   

5.
A cDNA clone for the chicken liver receptor which mediates endocytosis of glycoproteins containing terminal N-acetylglucosamine has been isolated and sequenced, confirming the previously obtained amino acid sequence of this protein (which is also known as the chicken hepatic lectin). This cDNA was introduced into Rat-1 fibroblasts and expressed using the promotor in the long terminal repeat of Moloney murine leukemia virus. Cells expressing chicken receptor were identified by screening with antireceptor antibodies followed by fluorescein-conjugated second antibodies. Receptor expressed in these cells was indistinguishable on gel electrophoresis from receptor isolated from liver. Three clonally isolated lines were examined for their ability to bind agalacto-alpha 1-acid glycoproteins at 0 degrees C and to take up and degrade this ligand at 37 degrees C. The receptor number (50,000/cell), affinity for ligand (35 nM), and uptake rate (5 molecules ligand/surface receptor/h) are similar to those previously observed for chicken hepatocytes, and for the uptake of asialoglycoproteins by rat hepatocytes and hepatoma cells. These findings indicate that the chicken receptor correctly traverses the endocytic pathway in a rat cell even though the cytoplasmic domain of this protein shows no primary structural homology with the corresponding portion of the rat liver receptor or with receptors found in fibroblasts.  相似文献   

6.
The profoundly elevated concentrations of low-density lipoproteins (LDL) present in homozygous familial hypercholesterolemia lead to symptomatic cardiovascular disease and death by early adulthood. Studies conducted in nonhepatic tissues demonstrated defective cellular recognition and metabolism of LDL in these patients. Since mammalian liver removes at least half of the LDL in the circulation, the metabolism of LDL by cultured hepatocytes isolated from familial hypercholesterolemic homozygotes was compared to hepatocytes from normal individuals. Fibroblast studies demonstrated that the familial hypercholesterolemic subjects studied were LDL receptor-negative (less than 1% normal receptor activity) and LDL receptor-defective (18% normal receptor activity). Cholesterol-depleted hepatocytes from normal subjects bound and internalized 125I-labeled LDL (Bmax = 2.2 micrograms LDL/mg cell protein). Preincubation of normal hepatocytes with 200 micrograms/ml LDL reduced binding and internalization by approx. 40%. In contrast, 125I-labeled LDL binding and internalization by receptor-negative familial hypercholesterolemic hepatocytes was unaffected by cholesterol loading and considerably lower than normal. This residual LDL uptake could not be ascribed to fluid phase endocytosis as determined by [14C]sucrose uptake. The residual LDL binding by familial hypercholesterolemia hepatocytes led to a small increase in hepatocyte cholesterol content which was relatively ineffective in reducing hepatocyte 3-hydroxy-3-methylglutaryl-CoA reductase activity. Receptor-defective familial hypercholesterolemia hepatocytes retained some degree of regulatable 125I-labeled LDL uptake, but LDL uptake did not lead to normal hepatocyte cholesterol content or 3-hydroxy-3-methylglutaryl-CoA reductase activity. These combined results indicate that the LDL receptor abnormality present in familial hypercholesterolemia fibroblasts reflects deranged hepatocyte LDL recognition and metabolism. In addition, a low-affinity, nonsaturable uptake process for LDL is present in human liver which does not efficiently modulate hepatocyte cholesterol content or synthesis.  相似文献   

7.
The mechanism of sucrose transport into vacuoles isolated from leaf tissue has been studied only in barley (Hordeum vulgare) mesophyll cells. In this tissue, sucrose transport was reported to be a facilitated diffusion. We have observed a facilitated diffusion of sucrose into vacuoles isolated from this tissue. However, no pH dependence was observed. Evidence is presented indicating that the pH dependence of sucrose uptake into vacuoles may be an artifact, reflecting tonoplast instability and survival of isolated vacuoles in different buffers. Apparently vacuoles do not withstand exposure to some commonly used buffers.  相似文献   

8.
Studies on the internalization mechanism of cationic cell-penetrating peptides   总被引:12,自引:0,他引:12  
A great deal of data has been amassed suggesting that cationic peptides are able to translocate into eucaryotic cells in a temperature-independent manner. Although such peptides are widely used to promote the intracellular delivery of bioactive molecules, the mechanism by which this cell-penetrating activity occurs still remains unclear. Here, we present an in vitro study of the cellular uptake of peptides, originally deriving from protegrin (the SynB peptide vectors), that have also been shown to enhance the transport of drugs across the blood-brain barrier. In parallel, we have examined the internalization process of two lipid-interacting peptides, SynB5 and pAntp-(43-58), the latter corresponding to the translocating segment of the Antennapedia homeodomain. We report a quantitative study of the time- and dose-dependence of internalization and demonstrate that these peptides accumulate inside vesicular structures. Furthermore, we have examined the role of endocytotic pathways in this process using a variety of metabolic and endocytosis inhibitors. We show that the internalization of these peptides is a temperature- and energy-dependent process and that endosomal transport is a key component of the mechanism. Altogether, our results suggest that SynB and pAntp-(43-58) peptides penetrate into cells by an adsorptive-mediated endocytosis process rather than temperature-independent translocation.  相似文献   

9.
The capacity of plant heterotrophic organs to transport and accumulate incoming nutrients (mostly in the form of sucrose) directly impacts their final size, crop productivity and nutritional value. Endocytosis as a mechanism for nutrient uptake in heterotrophic cells was investigated using suspension culture cells of sycamore (Acer pseudoplatanus L.) and the endocytic inhibitors wortmannin and LY294002. Time course analysis of sucrose uptake in intact walled cells revealed a two-phase process involving an initial 90 min wortmannin- and LY294002-insensitive sucrose uptake period, followed by a prolonged phase of rapid sucrose accumulation which was greatly inhibited by the two endocytic inhibitors. Walled cells were assessed for their capacity to incorporate the fluorescent endocytosis marker lucifer yellow-CH (LY) in the presence or absence of sucrose. Rates of sucrose and LY accumulation were virtually identical, as was their response to wortmannin. In addition, LY incorporation increased as a function of external sucrose concentration. When sucrose was substituted by other sugars or amino acids, uptake of LY greatly diminished, indicating that sucrose itself is the primary signal of endocytosis. Microscopic observations revealed the formation of vesicles containing LY and its eventual accumulation on the vacuole when sucrose was present in the incubation medium. These results demonstrate the existence of a sucrose-inducible endocytic process as a viable mechanism for solute transport into the vacuole of storage cells.  相似文献   

10.
Even though most of the hepatic binding capacity for mannose-terminated glycoproteins has previously been shown to reside in the hepatocytes (not in the non-parenchymal cells), detailed evidence for the specific uptake of mannose-terminated ligands has been lacking. In the present studies, yeast invertase, a large glycoprotein (Mr 270 000) containing about 50% mannose, was shown to be taken up into hepatocytes by receptor-mediated endocytosis. The uptake was saturable and could be specifically inhibited by mannosides or by a Ca2+ chelator. The asialo-glycoprotein receptor was not involved. The low-Mr (13 000) ligand ribonuclease B, which contains a single high-mannose glycan, was not taken up by hepatocytes; however, it was taken up as fast as invertase by non-parenchymal liver cells. After injection of 131I-invertase into a rat in vivo, about one-half of the labelled protein was recovered in the hepatocytes. On a per-cell basis, each endothelial cell contained 3-4 times as much radioactivity as did the hepatocytes. On fractionation of hepatocytes in sucrose gradients, invertase showed a different intracellular distribution from that of asialo-fetuin, in that invertase moved much faster into that region of the gradient where the lysosomes were recovered. This indicates that invertase and asialo-fetuin are not transported intracellularly by identical mechanisms.  相似文献   

11.
Neonatal hepatocytes are less active in uptake of bile acids than are mature hepatocytes. This phenomenon has been further investigated by transport studies with azidobenzamidotaurocholate (ABATC). Taurocholate, cholate and the photolabile ABATC were taken up by liver cells of adult rats by a sodium-dependent and by an additional sodium-independent mechanism. In the dark, ABATC inhibited the uptake of taurocholate and cholate. Taurocholate decreased the transport of ABATC in a competitive manner, both in the presence and absence of sodium. In neonatal hepatocytes the Vmax for taurocholate and for ABATC was similar but was lower than in mature liver cells. In contrast, the Km was similar for neonatal and mature hepatocytes. For identification of binding proteins in both kinds of cells ABATC was photolysed after preincubation with isolated hepatocytes. Under our experimental conditions (single ultraviolet flash) about 80% of the azido groups was converted to nitrene. The covalently binding nitrene derivative inhibited bile salt transport irreversibly. Photolabeling of intact hepatocytes or of isolated plasma membranes with ABATC resulted in radioindication of membrane proteins with 67, 60, 54, 50 and 43 kDa in mature plasma membranes but of proteins with masses of 67, 54, 43 and 37 kDa in neonatal basolateral membranes. The 50 kDa protein in largely lacking in membranes of 9-day-old rats. The process of photolabeling itself was sodium-independent when isolated cells were treated with ABATC. In contrast, the degree of labeling of intact hepatocytes was markedly reduced in the absence of sodium and chloride. 100-fold molar excess of taurocholate, benzamidotaurocholate (BATC), phalloidin or cyclosomatostatin protected isolated plasma membranes against coupling of ABATC. Photolabeling of hepatoma cells known to be deficient in bile salt transport did not result in radiomodification of membrane proteins.  相似文献   

12.
The effects of plasma components on the kinetics of copper transport by rat hepatocytes were examined in an attempt to determine how copper is mobilized from plasma for uptake by the liver. Specific protein-facilitated transport was indicated by saturation kinetics, competition by related substrates, and similar kinetic parameters for uptake and efflux. For copper uptake, Km = 11 +/- 0.6 microM and Vmax = 2.7 +/- 0.6 nmol Cu/(min X mg protein). Zinc is a competitive inhibitor of copper uptake, and copper competes for zinc uptake. Copper efflux from preloaded cells is biphasic. The kinetic parameters for the initial rapid phase are similar to the parameters for uptake. Copper transport by hepatocytes is strictly passive. A variety of metabolic inhibitors have no effect on uptake and initial rates are solely dependent on extracellular-intracellular concentration gradients. Albumin markedly inhibits copper uptake by a substrate removal mechanism, and histidine facilitates albumin-inhibited copper uptake. The active species that delivers copper to hepatocytes under conditions of excess albumin and excess histidine is the His2Cu complex. Experiments with [3H]His2 64Cu showed that the transported species is free ionic copper. The kinetic parameters of copper transport by hepatocytes isolated from the brindled mouse model of Menkes' disease are normal. However, these cells show a decreased capacity to accumulate copper on prolonged incubation. An intracellular metabolic defect seems to be involved.  相似文献   

13.
Endocytosis of [125I]iodixanol was studied in vivo and in vitro in rat liver cells to determine fluid phase endocytic activity in different liver cells (hepatocytes, Kupffer cells and endothelial cells). The Kupffer cells were more active in the uptake of [l25I]iodixanol than parenchymal cells or endothelial cells. Inhibition of endocytic uptake via clathrin-coated pits (by potassium depletion and hypertonic medium) reduced uptake of [125I]iodixanol much more in Kupffer cells and endothelial cells than in hepatocytes. To gain further information about the importance of clathrin-mediated fluid phase endocytosis, the expression of proteins known to be components of the endocytic machinery was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting, endothelial cells and Kupffer cells were found to express approximately fourfold more rab4, rab5 and rab7 than parenchymal cells, while clathrin was expressed at a higher level in endothelial cells than in Kupffer cells and hepatocytes. Using electron microscopy it was shown that liver endothelial cells contained approximately twice as many coated pits per membrane unit than the parenchymal and Kupffer cells, thus confirming the immunoblotting results concerning clathrin expression. Electron microscopy on isolated liver cells following fluid phase uptake of horseradish peroxidase (HRP) showed that HRP-containing organelles had a different morphology in the different cell types: In the liver endothelial cells HRP was in small, tubular endosomes, while in Kupffer cells HRP was mainly found in larger structures, reminiscent of macropinosomes. Parenchymal cells contained HRP in small vacuolar endosomes with a punctuated distribution. In conclusion, we find that the Kupffer cells and the endothelial cells have a higher pinocytic activity than the hepatocytes. The hepatocytes do, however, account for most of the total hepatic uptake. The fluid phase endocytosis in liver endothelial cells depends mainly on clathrin-mediated endocytosis, while the parenchymal cells have additional clathrin-independent mechanisms that may play an important role in the uptake of plasma membrane components. In the Kupffer cells the major uptake of fluid phase markers seems to take place via a macropinocytic mechanism.  相似文献   

14.
HDL removes excess cholesterol from peripheral tissues and delivers it to the liver and steroidogenic tissues via selective lipid uptake without catabolism of the HDL particle itself. In addition, endocytosis of HDL holo-particles has been debated for nearly 40 years. However, neither the connection between HDL endocytosis and selective lipid uptake, nor the physiological relevance of HDL uptake has been delineated clearly. This review will focus on HDL endocytosis and resecretion and its relation to cholesterol transfer. We will discuss the role of HDL endocytosis in maintaining cholesterol homeostasis in tissues and cell types involved in atherosclerosis, focusing on liver, macrophages and endothelium. We will critically summarize the current knowledge on the receptors mediating HDL endocytosis including SR-BI, F1-ATPase and CD36 and on intracellular HDL transport routes. Dependent on the tissue, HDL is either resecreted (retro-endocytosis) or degraded after endocytosis. Finally, findings on HDL transcytosis across the endothelial barrier will be summarized. We suggest that HDL endocytosis and resecretion is a rather redundant pathway under physiologic conditions. In case of disturbed lipid metabolism, however, HDL retro-endocytosis represents an alternative pathway that enables tissues to maintain cellular cholesterol homeostasis.  相似文献   

15.
1. The uptake of ovalbumin (OVA) in rat liver parenchymal cells (PC) and non-parenchymal cells was studied in vivo and in vitro in order to compare the cellular expression of glycoprotein receptors and the kinetics of intracellular transport of ligand endocytosed by these receptors. 2. Ovalbumin was labelled with 125I or with 125I-tyramine-cellobiose (125I-TC). By using 125I-TC-OVA the labelled degradation products were trapped in the cells. 3. 125I-TC-OVA was rapidly cleared from blood mainly by receptor-mediated uptake in the liver. At 30 min after injection, 50% of the ligand was recovered in the liver. The endothelial cells (EC) and the PC were the predominant cell types responsible for uptake. 4. The uptake in PC was strongly inhibited by asialo-orosomucoid (AOM), but not by mannan, indicating that the uptake in these cells was mediated by the galactose receptor and not by the mannose receptor. This finding is compatible with the observation that a proportion of the OVA contains terminal galactose residues in the carbohydrate moiety. 5. In vitro uptake of OVA in cultured EC was saturable and inhibited by mannan, mannose, fructose, N-acetylglucosamine, EDTA or monensin, but not by galactose or AOM. The uptake of OVA in these cells was therefore mediated by the mannose receptor. 6. To label the organelles involved in endocytosis in PC and EC, 125I-TC-OVA was injected intravenously together with an excess of either AOM or mannan. In this way the labelled ligand could be directed selectively to EC or PC respectively. Subcellular fractionation of total liver in sucrose and Nycodenz gradients revealed that in EC the intracellular transport of OVA is so fast that endocytosed ligand accumulates and thus increases the density of the lysosomes. Conversely, in PC transfer of ligand is slower, with the result that accumulation of undegraded ligand in the lysosomes does not occur. These findings are interpreted to mean that in EC the rate-limiting step of handling of endocytosed ligand is intralysosomal degradation, whereas in PC the rate-limiting step is transport of ligand to the lysosomes. 7. Altogether, these findings suggest that endocytosis of OVA by the liver EC and PC is mediated by mannose and galactose receptors respectively, and that the kinetics of intracellular transport of OVA differ in the two cell types.  相似文献   

16.
1. The uptake of 125I-labelled high density lipoproteins (HDL) in various organs of the rat was determined after an intravenous injection. The uptake of 125I-labelled polyvinylpyrrolidone in the same organs was determined in order to assess uptake by fluid endocytosis. The uptake/organ was highest for the liver. The adrenals showed the highest uptake/unit weight of the organs studied. The liver, the kidneys and the spleen showed comparable values for uptake/g of tissue. The uptake of 125I-labelled HDL exceeded by far that of 125I-labelled polyvinylpyrrolidone in the liver, the kidneys, the spleen and the adrenals, indicating that the uptake of 125I-labelled HDL was mediated by adsorptive endocytosis. 2. The in vivo uptake of 125I-labelled HDL was determined in purified hepatocytes and non-parenchymal cells prepared by collagenase perfusion of livers from animals after intravenous injections of 125I-labelled HDL. When expressed per cell, the hepatocytes and the non-parenchymal liver cells took up about the same amount of 125I-labelled HDL. 3. The in vitro uptake and degradation of 125I-labelled HDL in isolated rat hepatocytes was studied. The uptake at increasing concentrations of 125I-labelled HDL was saturable indicating uptake mediated through binding sites. 125I-labelled HDL were easily degraded by contaminating proteases from the perfusate. 4. Subcellular fractionation by isopycnic centrifugation indicated that the accumulation of 125I-labelled HDL did not take place in the lysosomes, but rather on the plasma membrane and possibly in the endosomes (phagosomes). 5. 125I-labelled HDL were internalized into the cells and degraded in the lysosomes. Leupetin and chloroquine, inhibitors of the lysosomal function effectively inhibited the formation of 125I-labelled acid-soluble radioactivity by the cells. Chloroquine, but not the protease inhibitor leupeptin, reduced the hydrolysis of the cholesteryl ester moiety of HDL.  相似文献   

17.
18.
The plasma membrane represents an impermeable barrier for most macromolecules. Still some proteins and so-called cell-penetrating peptides enter cells efficiently. It has been shown that endocytosis contributes to the import of these molecules. However, conflicting results have been obtained concerning the nature of the endocytic process. In addition, there have been new findings for an endocytosis-independent cellular entry. In this study, we provide evidence that the Antennapedia-homeodomain-derived antennapedia (Antp) peptide, nona-arginine and the HIV-1 Tat-protein-derived Tat peptide simultaneously use three endocytic pathways: macropinocytosis, clathrin-mediated endocytosis and caveolae/lipid-raft-mediated endocytosis. Antennapedia differs from Tat and R9 by the extent by which the different import mechanisms contribute to uptake. Moreover, at higher concentrations, uptake occurs by a mechanism that originates from spatially restricted sites of the plasma membrane and leads to a rapid cytoplasmic distribution of the peptides. Endocytic vesicles could not be detected, suggesting an endocytosis-independent mode of uptake. Heparinase treatment of cells negatively affects this import, as does the protein kinase C inhibitor rottlerin, expression of dominant-negative dynamin and chlorpromazine. This mechanism of uptake was observed for a panel of different cell lines. For Antp, significantly higher peptide concentrations and inhibition of endocytosis were required to induce its uptake. The relevance of these findings for import of biologically active cargos is shown.  相似文献   

19.
In previous experiments the surface expression of epidermal growth factor (EGF) receptors in freshly isolated rat hepatocytes varied temperature- and time-dependently and was depleted by monensin and cycloheximide in a way suggesting that a subpopulation of these receptors are subject to constitutive cycling (Gladhaug and Christoffersen; 1988). We here report the finding that pretreatment of the hepatocytes with amiloride exerts marked effects on cellular EGF receptor movements. After 2 h incubation with 1 mM amiloride, the receptor level was approximately 270,000 sites/cell surface vs. 140,000 in the untreated cell, with no change in receptor affinity. Amiloride thus stabilized the surface EGF receptor pool at an elevated level. In cells pretreated with amiloride for 60 min, the relative endocytosis decreased from about 2.6 EGF molecules internalized per receptor during 15 min endocytosis in untreated cells to about 1.5 molecules/receptor in amiloride-treated cells. These results suggest that amiloride causes an accumulation of EGF receptors at the hepatocyte surface due to inhibition of constitutive receptor internalization. In addition, it was found that in amiloride-treated hepatocytes the phorbol ester TPA strongly inhibited high-affinity EGF binding without affecting the total surface receptor number. In control cells, TPA did not consistently affect binding. Pretreatment with amiloride prevented surface EGF receptor depletion induced by cycloheximide and puromycin, but it did not significantly inhibit surface receptor depletion caused by monensin. Although the underlying mechanism of the amiloride effect on intracellular receptor trafficking is not clear, the results provide further evidence for a continuous, ligand-independent EGF receptor cycling pathway in hepatocytes.  相似文献   

20.
Analysis of the uptake and metabolism of [14C]cysteine in rat liver was undertaken using freshly isolated hepatocytes and hepatocytes maintained in primary culture. The uptake of [14C]cysteine by freshly isolated hepatocytes was by means of both saturable and non-saturable transport systems and the former system was thought to involve facilitated diffusion. The uptake of [14C]cysteine by hepatocytes maintained in primary culture for 24 h also consisted of non-saturated and saturated transport mechanisms. The magnitude of the saturable transport system in cultured hepatocytes was, however, much greater than that found in freshly isolated hepatocytes, and was considered to be operated by active transport. Both freshly isolated and primary cultured hepatocytes had cysteine sulphinic acid decarboxylase activity, but this enzyme activity in the latter cells was noticeably reduced in comparison with that found in freshly isolated hepatocytes. Hepatocytes maintained in primary culture produced not only radiolabelled taurine, but also radiolabelled cysteine sulphinic acid, hypotaurine and alanine when incubated with [14C]cysteine. The present results indicate that cultured hepatocytes actively transport cysteine as well as metabolizing cysteine to taurine via cysteine sulphinic acid and hypotaurine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号