首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanda  B. K. 《Plant & cell physiology》1980,21(7):1133-1141
The responses of petiolar tissue of isolated leaves of Argyreianervosa to hormones were investigated by maintaining a transversegradient of auxin and auxin antagonist or auxin and gibberellin.The auxin used was ß-indolylbutyric acid (IBA) andthe auxin antagonist applied was maleic hydrazide. Gibberellicacid was also applied simultaneously with IBA. The experimentwas designed in such a way that while the solution of one hormonewas applied internally to the petiole with a capillary tube,the external surface of the petiole came in contact with thesolution of the other hormone. Wounding was caused in the pith by inserting a capillary tube.The division of the parenchymatous cells bordering the woundwas greater and cell dimension was less when auxin was appliedinternally but cell division was restricted and cell dimensionincreased when the auxin antagonist was applied at high concentrations.Root primordia and vascular tissues were formed in the pithwhen the concentration of auxin in the vicinity was greater.But these processes were blocked when the concentration of theauxin antagonist was greater in the neighborhood. The effectof auxin and gibberellin was synergistic in inducing these processes. (Received May 23, 1980; )  相似文献   

2.
THE RELATIONSHIP OF GIBBERELLIN AND AUXIN IN PLANT GROWTH   总被引:5,自引:0,他引:5  
No synergism was found between IAA and gibberellin in the Avenucurvature test and this bioassay thus measures changes in diffusibleauxin resulting from gibberellin treatment and not a synergisticaction of the gibberellin on the curvature response to auxin.Gibberellin treatment causes an increase in diffusible auxinfrom the stem apex of dwarf pea (Pisum sativum L. var. LittleMarvel) 24 to 48 hours before the elongation response in thestem. The increase in diffusible auxin in the stem apex of Centaureacyanus L. var. Blue Boy occurs four to six days before the boltingresponse to gibberellin treatment under short days. The stemtissues of both the dwarf pea and Centaurea show an elongationresponse to IAA when the IAA is applied in a manner simulatingthe stem apex. Thus the growth of the dwarf pea and the boltingof Centaurea brought about by treatment with gibberellin aredependent on an increase in diffusible auxin. 1Present address: Biological Institute, College of General Education,University of Tokyo, Komaba, Meguro, Tokyo.  相似文献   

3.
The calabrese cultivar Brassica oleracea var. italica cv. GreenComet was used in a study of the effects of exogenous hormoneson the growth and differentiation of seedling organs in vitro.Four types of explants were tested: hypocotyl segments, rootsegments, primary leaf discs and cotyledon discs. These explantswere incubated on media containing factorial combinations ofBAP x IBA, BAP x NAA, KN x IBA and KN x NAA (all at 0, 0.1,10 and 10.0mg l–1). Hypocotyls were the most regenerativeexplants; shoot production was favoured by cytokinin: auxinratios greater than one and was decreased by IBA at 10 mg l–1when callus was produced. Shoot formation from root explantsoccurred either in the absence of hormones or with low concentrations;no shoot was produced when any hormone was present at 10 mgl–1. In contrast, shoot production from primary leaf diseswas favoured by high concentrations of both auxin and cytokininwith the combination of BAP and IBA the most effective. Shootproduction from cotyledon discs was sporadic with no consistentresponse on any auxin/cytokinin combination. After further experimentson the optimization of hormone concentration, the followingcombinations were chosen as allowing reliable regeneration:0.1 mg l–1 BAP+0.1mg l–1 IBA for hypocotyl segments,0.075 mg l–1 KN +0.025 mg l–1 IBA for root segments,and 5.0 mg l–1 BAP+5.0 mg l–1 IBA for leaf discs. Brassica oleracea var. italica, calabrese, tissue culture, seedling, auxin, cytokinin  相似文献   

4.
The growth of a cell strain derived from the stem pith of tobacco(Nicotiana tabacum L., cv. Virginia Bright Italia) was investigatedin subcultures grown at various levels of synthetic auxins.Both partial and complete auxin starvation resulted in a decreaseof the frequency of cell division. For these treatments theendogenous free indole-3-acetic acid content increased substantiallyat the commencement of the exponential growth phase. The possibilitythat the receptivity of the cells to auxin changed during thegrowth cycle was examined by measuring the activity of a membrane-boundauxin-binding site. In subcultures grown in a medium with anoptimal auxin concentration the maximum auxin-binding activitywas restricted to the end of the exponential growth phase. Inthe cells cultivated in partially or completely auxin deprivedmedia the auxin-binding activity increased to varying extents.These results probably reflect mechanisms controlling both theintracellular content of free auxin and the sensitivity of thecells to exogenous auxin supply (including auxin binding) withrespect to the cell division and/or growth Key words: Nicotiana tabacum L., plant cell culture, IAA, auxin-binding site, cell division  相似文献   

5.
Kefford , N. P., and P. L. Goldacre . (Division of Plant Industry, C.S.I.R.O., Canberra, Australia.) The changing concept of auxin. Amer. Jour. Bot. 48(7): 643–650. Illus. 1961.—Recent findings in auxin research are interpreted as follows: The concept of auxin as only a cell-enlargement regulator can no longer accommodate the variety of growth phenomena controlled by auxin. In isolated tissues, auxin interacts with gibberellin in the control of cell enlargement, and auxin and kinin interact in initiating cell division. Some evidence suggests a single site of auxin action for both processes. It is proposed that auxin is not a determining agent but a predisposing agent, causing the production of something in limiting amount which is required in both processes —in the presence of kinin, cell division is activated; in the presence of gibberellin, cell enlargement is activated. In the presence of limiting amounts of auxin, there could be competition between the 2 processes, the outcome depending on the balance of kinin and gibberellin. The possibility of competition in the presence of supraoptimal auxin concentrations is also suggested. Difficulties arise in the application of this concept to observations on intact plants, where cause and effect relationships are not readily established; the use of excised plant parts shows the relationships more clearly. The role of auxin in cell and organ differentiation is also discussed. The primary auxin reaction is not yet known. The biological assay for auxins is discussed with reference to this and to natural auxins. The function of auxin in the correlation of tissue and organ growth through the auxin transport system is stressed, and it is pointed out that if transport is a necessary requirement of a native auxin, indole-3-acetic acid is at present the only substance known to qualify.  相似文献   

6.
A hierarchical scheme for the central role of the plant hormones auxin and gibberellins in fruit set and development has been established for the model plants Arabidopsis and tomato. In the fruit crop Capsicum annuum, the importance of auxin as an early signal in fruit set has also been recognized; however, the effect of gibberellins and their interaction with auxin has not yet been studied. The aim of this study was to determine the role of gibberellin and the hierarchy between auxin and gibberellin. We applied gibberellin alone or in combination with auxin or with the gibberellin biosynthesis inhibitor paclobutrazol on stigmas of emasculated flowers. Gibberellin application enhanced fruit set, whereas application of paclobutrazol reduced fruit set. The effect of paclobutrazol treatment could be counteracted by coapplication of gibberellin but not by auxin. These results indicate that in C. annuum, like in Arabidopsis and tomato, auxin is the major inducer of fruit set that acts in part by inducing gibberellin biosynthesis. Interestingly, gibberellin does not significantly contribute to the final fruit size but seems to play an important role in preventing flower and fruit abscission, a major determinant of production loss in C. annuum. At the same time, gibberellin together with auxin seems to balance cell division and cell expansion during fruit growth.  相似文献   

7.
Chloramphenicol, actinomycin D, and other inhibitors of protein synthesis promote abscission in several plant genera. Abscission is accelerated in species where an abscission layer is present, as well as in tissue where no abscission layer develops prior to abscission. The inhibitors promote abscission in species where cell division is reported to precede the separation processes as well as in tissues where no cell division is associated with the initiation of abscission. Indoleacetic acid (IAA) or auxin precursors, when applied with chloramphenicol and aclinomycin D, overcome the promotive effects of the inhibitors on abscission. These inhibitors apparently do not promote abscission through their effects on auxin precursor conversion, IAA transport, and IAA destruction in the petiole. IAA increases the incorporation of leucine-1-14C into a trichloroacetic acid precipitable fraction of the abscission zone under conditions where abscission is retarded. A low concentration of IAA which accelerates abscission, decreases incorporation of leucine into protein. Other promoters of abscission — chloramphenicol, d-aspartic acid, and gibberellic acid —also decrease the incorporation of leucine into the protein of the abscission zone. The data indicate that enzymes required for the degradative processes associated with abscission are already present in the abscission zone whereas a continuous synthesis of protein is required for the retention of the leaf.  相似文献   

8.
1. The seeds ofNasturtium palustreDC. do not germinate, eitherin the light or darkness, at various constant temperatures,but require for their full germination a certain period of alow temperature (5°) applied immediately after light irradiation.These results indicate the existance of at least two processes,a light-dependent process and a low temperature-requiring process,in the initiation of germination ofNasturtiumseeds. Experimentalevidence indicated further that the light exposure causes twodifferent processes in the seed germination. 2. When a dark period at 23° was inserted between the lightirradiation and the low temperature treatment the germinationwas suppressed. The inhibitory effect of the inserted dark periodat 23° was eliminated by a short irradiation during thedarkness (light-break). 3. Prolonged exposure ofNasturtium seeds to any concentrationof gibberellin brought about no germination when exposure wasgiven in complete darkness. The germination was promoted onlywhen light irradiation was applied to the seeds. A short applicationof gibberellin at a fairly high concentration was, however,remarkably effective for the germination even in the darkness,and the germination was inhibited as the gibberellin applicationwas lengthened. It was considered that gibberellin could substitutefor the combined effect of light irradiation and low temperaturetreatment to induce the germination of Nasturtium seeds, andthat gibberellin was inhibitive toward the reactions followingthe above treatments which induced the germination (Received October 31, 1996; )  相似文献   

9.
SCOTT  IAN M. 《Annals of botany》1988,61(3):389-392
The morphological effects of gibberellin A3 (GA3) on the dgtmutant of tomato were investigated. The mutant effectively showedthe normal range of responses, including a promotion of stemlength due to an increased number of longer internodes, a dramaticincrease in apical dominance, and effects on leaf shape andcolour. In the case of stem elongation, the quantitative responseof the mutant was greater than normal. The morphological abnormalitiescharacteristic of the dgt mutant, such as horizontal growth,a thin stem and hyponastic leaves, were not normalized by GA3. It is concluded that the demonstrated lack of response to auxinof the dgt mutant does not impair its gibberellin responses. Tomato, gibberellin, auxin, mutant, shoot development  相似文献   

10.
The actions of plant regulators in set and development of fruitsare well known. However, the presence and function of endogenoushormones in parthenocarpic fruits have still not been sufficientlyinvestigated. A comparison between seeded and seedless fruitsmakes it possible to obtain a more accurate understanding ofsome relationships between growth regulators and stages of fruitdevelopment. Endogenous auxin and gibberellin activity levelsand some growth parameters (fresh and dry weight, cell numberand cell volume, DNA content) have been determined in tomatofruits (Lycopersicon esculentum Mill.) of the cultivar Venturaand of its isogenic parthenocarpic mutant. In both genotypes,auxin and gibberellin are present in the first week after anthesis,though at different concentrations and with different patterns.These two activities are involved in fruit setting. The simultaneousoccurrence of maximum auxin concentration and of the beginningof cell enlargement, in both genotypes, shows that the activitypresent at this time starts fruit development and possibly determinesthe size of the fruits. High auxin activity is observed only in seeded fruits 20–40days after anthesis, and it is probably synthesized by seeds.Gibberellin activity is present, corresponding to the changein fruit development from the mature green to pink stages. (Received February 16, 1978; )  相似文献   

11.
Style and stigma elongation and stigma unfolding, and the roles of plant hormones in these processes in Gaillardia grandiflora Van Houtte were investigated. Style and stigma elongation in vivo began just after anthesis, and style elongation was accompanied by epidermal cell elongation (greatest near the stigma) and a fresh weight increase, but not by cell division or a dry weight increase. The stigma unfolded after the style and stigma elongated. Style-stigma units excised from young disc flowers of this composite were measured as they responded to plant growth regulators applied singly, as well as in sequential and simultaneous combinations, in vitro. Style elongation was promoted by auxin, was inhibited by gibberellins and ethylene, and was unaffected by other growth regulators. Stigma elongation followed a similar pattern of response. Endogenous auxin levels and ethylene production showed parallel variation and endogenous gibberellin levels showed inverse variation with style and stigma elongation. Stigma unfolding was more sensitive to auxin applications and was promoted by applied ethylene. Ethylene production showed parallel variation and endogenous auxin levels showed inverse variation with stigma unfolding. AVG and Co2+ applications decreased auxin-induced style elongation and fusicoccin promoted all of the growth responses of style-stigma units in vitro. A gibberellin-auxin-ethylene-acid growth interaction mode of control is proposed for these three growth processes.  相似文献   

12.
The influence of exogenous IBA (indol-3yl-butyric acid) on rootand callus formation was studied in shoots of the apple rootstocksA2 and M26. The shoots grown in vitro were derived originallyfrom meristems of both juvenile and adult trees. Endogenousindol-3yl-acetic acid (IAA) concentrations in leaves and stemswere correlated with the responses to applied IAA. After 30 subcultures shoots from A2 and M26 rooted easily, butA2 did so more readily and even without IBA. Treatment withIBA improved percentage rooting and number of roots in bothrootstocks. Ex-adult and ex-juvenile shoots of A2 formed rootsto the same extent. However, ex-adult shoots of A2 showed ahigher IBA optimum for root number than ex-juvenile A2 and werealso less sensitive to supra-optimal IBA concentrations. Incontrast, in M26, there were no differences between ex-adultand ex-juvenile shoots. The results imply that rooting ability is associated more withdifferences between cultivars than with the origin of the explants.The best rooting occurred in ex-adult shoots of A2 which hadthe lowest endogenous IAA concentration, while callus formationwas correlated with high endogenous auxin concentration. Ex-adultA2 produced almost no callus even after exposure to high IBAconcentrations (25µM) whereas ex-adult M26 formed muchmore callus at 1/10 of the IBA concentration. Malus sylvestris (L.) Mill. var. domestica Borkh., Malus pumila Mill., apple rootstocks A2 and M26, in vitro culture, root and callus formation, HPLC analyses of IAA  相似文献   

13.
In river floodplains, variation in flooding conditions resultsin successional stages in colonization ranging from annual pioneersto long-lived perennials. Reactions to submergence of speciesfrom the mid-successional zone are compared with adaptive responsesof species from other zones. Presence and abundance are relatedto elevation and can be explained by characteristics of biomassproduction, and recovery in response to various submergenceintensities. Rumex species, from early to late successional stages, serveas models to elucidate, in more detail, mechanisms of adaptation.Flooding-resistant species develop large numbers of adventitiousroots upon submergence and exposure to low oxygen conditions.Due to internal oxygen transport through aerenchyma, soil aroundthese roots is reoxidized, which stimulates bacterial nitrification.Ethylene and auxin promote adventitious rooting. Increased petioleelongation is also an adaptive feature of submergence-resistantRumex species. Differences between species in submergence-inducedgrowth are not only controlled by variation in endogenous levelsof ethylene but also by different sensitivities to this hormone.Auxin does not affect Rumex petiole elongation, but a clearpositive effect of gibberellin is demonstrated. Apparently,submergence induces a higher sensitivity to gibberellin andethylene in the petioles of flooding-resistant Rumex. Many ofthe submergence reactions can also be induced by restrictingthe oxygen supply, suggesting that low-oxygen might be a triggeringfactor. The Rumex species we study represent various distinctcommunities. Thus, the ecophysiological phenomena observed inthese model plants may explain processes and patterns in otherspecies too and thus are interpretable at the riverside communitylevel.Copyright 1994, 1999 Academic Press Ecophysiology, submergence, flooding, hormones, adaptation, nitrification, depth accommodation, adventitious rooting, Rumex  相似文献   

14.
The uptake and metabolism of tritiated indolebutyric acid (IBA)and indoleacetic acid (IAA) were related to root regenerationon stem bases of apple (Malus cv "Jork") shootlets culturedin vitro. The major part of the auxins taken up from the mediumwas located in the bottom 1 mm of the stem basis, the locationwhere the roots emerge. In this part of the shoot about 4% ofthe accumulated IBA-3H remained in the free acid. Analysis onnormal phase TLC followed by reversed phase HPLC revealed thatabout 1% of the IBA-metabolites co-chromatographed with standardIAA. Incubation of shoots on medium with IAA led also to anIAAint content of about 1% of the amount absorbed. IAA was notconverted into IBA. A medium concentration of 3.2 µM IAAor IBA induced maximum root formation of 9 and 13 roots pershoot, respectively. The IAAint content in the stem base was0.5 µmol per kg FW after 5 days regardless of the auxinsource. Incubation on medium with IBA led to an IBAint concentrationof 3.4 µmol per kg FW. IBA may exert its action partlyvia conversion into IAA. However, the fact that IBA inducedmore roots than IAA suggests that IBA itself is also active,or modulates the activity of IAA. The partition of absorbed auxin over active free auxin acidand individual conjugates was not directly related to root formation.At inductive and non-inductive auxin concentrations no shiftin the ratio of free auxin acids to total absorbed auxin wasobserved during root formation. (Received March 4, 1992; Accepted May 25, 1992)  相似文献   

15.
The auxin transport inhibitors 2, 3, 5-triiodobenzoic acid (TIBA)and naphthylphthalamic acid (NPA) inhibited adventitious rootformation (ARF) induced by indol-3-butyric acid (IBA) on cuttingsfrom etiolated mung-bean seedlings floated on solutions of thegrowth regulators. The concentrations of TIBA and NPA requiredfor a 25 per cent reduction in ARF with 10 µM IBA wereestimated by linear interpolation to be 11.3 µm and 0.42µM respectively. NPA is a particularly potent inhibitorof IBA-induced ARF. The inhibitory effect of either compoundwas reversible by higher concentrations of IBA. NPA had no effectwhen applied after the auxin treatment. The inhibitory effects of TIBA or NPA could not be explainedby effects on the uptake or metabolism of [2-14C]IAA. Consideringthis and other evidence, it is suggested that NPA and possiblyTIBA are acting as specific antagonists of auxin in the inductionof ARF. Vigna radiata (L.), mung-bean, root induction, hypocotyl cuttings, auxin inhibitors, indol-3-butyric acid, 2,3,5-triiodobenzoic acid, naphthylphthalamic acid, auxin uptake, auxin metabolism, adventitious roots  相似文献   

16.
The role of auxins on root system architecture was studied by applying indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthaleneacetic acid (NAA) to maize roots and analysing the main processes involved in root development: primary root (PR) elongation, lateral root (LR) formation, and LR root elongation. We found that these effects were not dependent only on concentration, but also on the type of auxin applied. We also studied temporal changes in auxin inhibition of PR elongation. These temporal changes were analysed calculating the elongation ratio between two consecutive one day periods after auxin application. It was observed that a reduction in root elongation was also dependent on the type of auxin applied and its concentration. The inhibitory effect of IBA and IAA decreased on the second day, and the ratio also increased with the concentration. In contrast, NAA increased root elongation inhibition with time. Indeed, the ratio decreased as the NAA concentration increased. Regarding LR formation, we observed that external auxin increased only LR formation in certain zones of the PR. Finally, comparison of inhibition elongation associated with auxin in the LR and PR clearly demonstrates that PR elongation was more sensitive to auxin than LR elongation.  相似文献   

17.
Dark treatment during the most active period of tulip shootgrowth induced rapid elongation of the first internode. Endogenousfree-form gibberellin and diffusible auxin in the first internodeincreased while bound-form gibberellin decreased after the darktreatment. Alternating dark and light treatments at 24-h intervalscaused increases in elongation of the first internode and theamounts of free-form gibberellin and diffusible auxin in thedark but their decreases in the light. TIBA treatment at thefirst node inhibited both the elongation and the increase indiffusible auxin, but did not affect the gibberellin amount.Ancymidol application prior to the dark treatment inhibitedthe increase in both free-form gibberellin and diffusible auxin.Application of gibberellin A3 increased both elongation of thefirst internode and the amount of diffusible auxin. It alsocaused recovery from ancymidol-mediated reduction in elongationand diffusible auxin content. Dark-induced elongation of thefirst internode was inhibited when all organs above the firstinternode were excised, but endogenous free-form gibberellinincreased and bound-form gibberellin decreased. After excision,elongation of the first internode occurred only when both GA3and IAA were applied exogenously, or when IAA was applied withdark treatment. These results indicate that dark-induced elongationof the first internode of tulip is promoted by auxin, whichis transported from the upper organs into the first internodedue to stimulation from the dark-induced increase in free-formgibberellin. Free- and bound-form gibberellins changed complementarilywith the dark and light treatments. An interconversion systembetween the two forms in the first internode and its dependenceon light conditions are also discussed. (Received June 23, 1984; Accepted March 5, 1985)  相似文献   

18.
Auxins, IAA, 2,4-D, and NAA, and gibberellin, GA, significantlyenhanced the conidial germination rate in the wild-type Neurosporacrassa. The inhibitory effect of an antiauxin, 2,4,6-T on conidialgermination was overcome by IAA. The present results suggestthat auxin and gibberellin may act as regulators of conidialgermination in Neurospora. (Received November 21, 1977; )  相似文献   

19.
The plant hormone auxin has been shown to be involved in lateral root development and application of auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), increases the number of lateral roots in several plants. We found that the effects of two auxins on lateral root development in the indica rice (Oryza sativa L. cv. IR8) were totally different from each other depending on the application method. When the roots were incubated with an auxin solution, IAA inhibited lateral root development, while IBA was stimulatory. In contrast, when auxin was applied to the shoot, IAA promoted lateral root formation, while IBA did not. The transport of [3H]IAA from shoot to root occurred efficiently (% transported compared to supplied) but that of [3H]IBA did not, which is consistent with the stimulatory effect of IAA on lateral root production when applied to the shoot. The auxin action of IBA has been suggested to be due to its conversion to IAA. However, in rice IAA competitively inhibited the stimulatory effect of IBA on lateral root formation when they were applied to the incubation solution, suggesting that the stimulatory effect of IBA on lateral root development is not through its conversion to IAA.  相似文献   

20.
The optimal concentration of IAA (0.03 mM) for tracheary elementdifferentiation in lettuce pith explants was about ten timesgreater than the optimal concentration for callus proliferation.Related to this, the mean volume per tracheary element increasedwith increasing IAA concentration, 18-fold between 0.001 mMand 0.3 mM IAA. At the highest concentrations, some pith cellsappeared to differentiate directly into tracheary elements,without cell division, resulting in especially large trachearyelements. Tracheary strands developed at intermediate concentrationsof IAA, and led to a small increase in the mean length/breadthratio of tracheary elements. For tracheary elements differentiating from stem cambial derivatives,a reassessment of previous studies indicates that increase inauxin concentration brings greater tracheary element size atconcentrations up to the 0.03 mM optimum. Above this optimum,however, further increase in auxin concentration brings progressivelysmaller tracheary elements, as the high auxin curtails enlargementof the differentiating cells. This contrasts with the pith explants,in which tracheary element size increases with IAA concentrationmost markedly above the optimum concentration. The interpretationof these relations requires an understanding of the effectsof auxin concentration on interacting quantities such as initialsize of cells, rate of enlargement, and rate of differentiation. Lactuca sativa, lettuce, IAA concentration, pith explants, tracheary element dimensions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号