首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid composition inPseudomonas sp. CF600 during degradation of catechol and phenol individually and their mixture was investigated. Moreover, the influence of glucose as an additional, easily degradable carbon source on fatty acid profiling in bacteria grown on these aromatic substrates was studied. Both catechol and phenol treatments caused in bacterial cells crucial changes in the distribution of tested groups of fatty acids. The major changes included the increase of fatty acid saturation, decrease in the percentage of cyclopropane fatty acid 17:0cy and the appearance of branched and hydroxy fatty acids. Under catechol, phenol and their mixture exposure saturated/unsaturated ratio showed the value 6.5, 5.68 and 6.38 whereas in control cells this ratio reached the value 3.05. As a response to aromatic compounds bacteria formed fatty acids that were not detected in control cells growing on glucose. It has been demonstrated that the supplementation of cultured media containing single aromatic substrates or/and their mixture with glucose resulted in changes in degradation rates of catechol and phenol. It seemed that glucose influenced some metabolic pathways responsible for the assimilation of aromatic compounds. The incubation of cells in the presence of aromatic compounds and glucose rapidly led to alterations of whole-cell derived fatty acid composition. The most important changes were associated with saturation level of fatty acids and cyclopropane fatty acid contents.  相似文献   

2.
Aerobic degradation of 7 mmol/L phenol in the presence of alternative carbon sources (7 mmol/L glucose or acetate or 1–2 mmol/L 2‐chlorophenol) was investigated using non‐acclimatized and acclimatized sewage sludges and enrichment cultures. The substrates represented an intermediate of phenol degradation (acetate), an independent substrate (glucose) or a “precursor‐substrate” of phenol degradation (2‐chlorophenol). Bacteria from sewage sludge, not pre‐adapted to phenol (2 mmol/L), rapidly respired acetate and glucose in the presence of phenol, whereas phenol was only bioconverted to any unknown aromatic metabolite after 24 h. In the presence of phenol and 2‐chlorophenol, no removal of both substances was observed when using the unacclimatized sludge. Sludge that was acclimatized to the degradation of phenol showed an initial preference for easily degradable co‐substrates such as glucose or acetate with only a slow concomitant respiration of phenol. Respiration of phenol increased rapidly after the co‐substrates were depleted. The highest phenol degradation rates were 51.6 mmol/L d, when phenol was the sole carbon substrate. Vice versa, phenol was preferentially respired in the presence of a less easily degradable co‐substrate such as 2‐chlorophenol at a rate of around 7 mmol/L d. Further studies with an enrichment culture that was obtained after 7 successive transfers of phenol‐adapted sludge into mineral medium with phenol as the only carbon source indicated that the acetate and glucose‐degrading capabilities were diminished or almost completely lost. In these enrichment cultures, phenol degradation was not affected by the presence of glucose, but glucose was not degraded. In contrary, the presence of acetate slightly slowed down the phenol degradation rate of the enrichment culture. Growth of the microorganisms apparently occurred at the expense of phenol and acetate respiration. The result of this work may be of practical importance in determining the feeding strategy, which is the key factor for most biological wastewater treatment systems. When acetate was present together with phenol in a wastewater, the phenol degradation rates were influenced by acetate, since acetate was an intermediate of phenol degradation. Glucose as an “independent substrate” was apparently degraded by other bacteria via acetate, and in this way it also influenced the phenol degradation rates. Glucose‐degrading bacteria could be “washed out” from the acclimatized sludge during several transfers into mineral medium with phenol as the sole carbon source. If later on, glucose was added again, it remained undegraded and did not influence phenol degradation. 2‐Chlorophenol degradation also requires other bacteria than phenol degraders.  相似文献   

3.
Pseudomonas vesicularis and Staphylococcus sciuri were isolated as dominant strains from phenol-acclimated activated sludge. P. vesicularis was an efficient degrader of phenol, catechol, p-cresol, sodium benzoate and sodium salicylate in a single substrate system. Under similar conditions S. sciuri degraded only phenol and catechol from among aromatic compounds that were tested. Cell-free extracts of P. vesicularis grown on phenol (376 mg l(-1)), sodium benzoate (576 mg l(-1)) and sodium salicylate (640 mg l(-1)) showed catechol 2,3-dioxygenase activity initiating an extradiol (meta) splitting pathway. The degradative intradiol (ortho) pathway as a result of catechol 1,2-dioxygenase synthesis was induced in P. vesicularis cells grown on catechol (440 mg l(-1)) orp-cresol (432 mg l(-1)). Catechol 1,2-dioxygenase and the ortho-cleavage has been also reported in S. sciuri cells capable of degrading phenol (376 mg l(-1)) or catechol (440 mg l(-1)). In cell-free extracts of S. sciuri no meta-cleavage enzyme activity was detected. These results demonstrated that gram-positive S. sciuri strain was able to effectively metabolize some phenols as do many bacteria of the genus Pseudomonas but have a different capacity for degrading of these compounds.  相似文献   

4.
Abstract Fermentative degradation of hydroquinone, catechol, and phenol was demonstrated with nearly-homogeneous mixed methanogenic cultures obtained from freshwater sediments and sewage sludge by enrichment with the respective phenolic substrates. Gram-negative short rods predominated in these cultures, together with hydrogen- and acetate-utilizing methanogens. Acetate and methane were the only degradation products. Bacteria enriched with hydroquinone or catechol also degraded phenol and p -hydroxy-benzoate, but not resorcinol or resorcylic acids. Phenol was formed as an intermediate during catechol and hydroquinone degradation, indicating that reductive dehydroxylation was the primary event in degradation of these substrates. Inhibition experiments with bromoethanesulfonate and acetylene indicated that catechol, hydroquinone, and phenol degradation depended on a syntrophic co-operation of fermenting bacteria and hydrogen-oxidizing methanogens.  相似文献   

5.
Fatty acid composition during naphthalene utilization was investigated in three strains of bacteria Pseudomonas vesicularis, Pseudomonas stutzeri and Pseudomonas sp. JS150 that expressed different naphthalene degradation abilities. All strains significantly changed their cellular fatty acid profiles as a response to naphthalene exposure. Since naphthalene was present in the medium P. stutzeri increased ratio of saturated/unsaturated fatty acids from 1.1 to 2.1 and Pseudomonas sp. JS150 from 7.5 to 12.0, respectively. In contrast, this ratio decreased from 2.1 to 1.1 in P. vesicularis under the same growth conditions. The changes comprised also alterations in the percentage of selected groups of fatty acids: iso and anteiso, hydroxy and cyclopropane fatty acids. Our results showed that naphthalene induced in tested strains different changes in fatty acids composition. It may suggest that in the presence of naphthalene microorganisms used different adaptive mechanisms to maintain the cells in appropriate physiological state.  相似文献   

6.
Anaerobic Biodegradation of Eleven Aromatic Compounds to Methane   总被引:28,自引:25,他引:3       下载免费PDF全文
A range of 11 simple aromatic lignin derivatives are biodegradable to methane and carbon dioxide under strict anaerobic conditions. A serum-bottle modification of the Hungate technique for growing anaerobes was used for methanogenic enrichments on vanillin, vanillic acid, ferulic acid, cinnamic acid, benzoic acid, catechol, protocatechuic acid, phenol, p-hydroxybenzoic acid, syringic acid, and syringaldehyde. Microbial populations acclimated to a particular aromatic substrate can be simultaneously acclimated to other selected aromatic substrates. Carbon balance measurements made on vanillic and ferulic acids indicate that the aromatic ring was cleaved and that the amount of methane produced from these substrates closely agrees with calculated stoichiometric values. These data suggest that more than half of the organic carbon of these aromatic compounds potentially can be converted to methane gas and that this type of methanogenic conversion of simple aromatics may not be uncommon.  相似文献   

7.
The effect of a nontoxic easily degradable substrate, glucose, on the biodegradation of toxic pollutant, phenol, was studied in batch reactors using a phenol degrading culture (Arthrobacter species). The effect of glucose on phenol degradation was determined at different glucose concentrations. The effect of different inoculum on substrate removal in a phenol and glucose mixture was also studied. Results indicated that when a mixed substrate (phenol and glucose) was used, phenol acclimated population showed an initial preference for phenol and utilised glucose after phenol removal. However phenol degradation rate was reduced in the presence of glucose. It was also observed that phenol degradation was completely inhibited when the glucose concentration exceeds 2 g/l. The substrate removal pattern changed completely when inoculum was drawn from mixed substrate acclimatised culture. The glucose utilisation started immediately and the rate of glucose utilisation was not affected by the presence of phenol. The phenol degradation also started simultaneously. In presence of phenol only, the rate of phenol degradation for the culture acclimatised to mixed substrates was lower than that of phenol acclimatised culture. These results indicate that nontoxic substrate can affect the biodegradation of toxic pollutants is suitable and acclimatisation may be necessary for biodegradation of mixed substrate.  相似文献   

8.
Abstract Sewage sludge-derived methanogenic enrichments degrading ferulic acid as sole carbon and energy source were partially inhibited with 2-bromoethanesulfonic acid. The various intermediates and products formed under inhibition of methanogenesis were studied using gas chromatography/mass spectrometry (GC/MS). In addition to aromatic, alicyclic, and aliphatic acids previously shown to be intermediates of ferulate degradation to CO2 and CH4, the following compounds were detected: toluene, ethylbenzene, phenol, p -cresol, 2-ethylphenol, catechol, and 3-hydroxy-4-ethylphenol. The character and the sequence of appearance of the compounds indicate that fermentative bacteria which initiate the anaerobic transformation of ferulic acid, in case of disruption of interspecies hydrogen transfer, dispose of electrons by converting part of the substrate to reduced derivatives. Aromatic hydrocarbons are further partially oxidized through hydroxylation of the ring (and, to a lesser extent, the side-chain), and partially reduced to saturated alicyclic rings. Some of these compounds seem to be gradually degraded to branched or straight- chain aliphatic acids. Some compounds, like catechol and ethylphenol, accumulate transiently or persistently in high concentrations (up to 16 mM carbon out of the initial concentration of 30 mM substrate carbon), indicating that hydroxylation of the aromatic ring might be an important metabolic reaction in these systems.  相似文献   

9.
After growth ofK. aerogenes in chemically defined media consisting of mineral salts andp-hydroxybenzoate with or without glucose, phenol was found in the culture fluid at concentrations inhibiting further growth. Bacteria adapted to mineral salts medium containingp-hydroxybenzoate as sole source of carbon and energy produced small but isolable quantities of 3,4-dihydroxybenzoic acid and catechol and oxidized these substances as rapidly asp-hydroxybenzoate. Bacteria adapted to mineral salts medium containing glucose as sole carbon and energy source did not oxidizep-hydroxybenzoate, 3,4-dihydroxybenzoate or catechol. Bacteria adapted to glucose medium or top-hydroxybenzoate medium did not oxidize or utilize phenol as sole carbon and energy source. A metabolic pathway forp-hydroxybenzoate degradation is proposed and the formation of phenol is attributed to a side reaction.  相似文献   

10.
Biodegradation of resorcinol and catechol was studied in upflow anaerobic fixed film-fixed bed (FFFB) reactors of uniform dimensions in mono and multisubstrate matrices. Cross feeding studies have revealed that phenol was poorly degraded in resorcinol acclimated reactor whereas it was readily degraded in catechol acclimated reactor. Addition of resorcinol along with phenol in a COD ratio 1:3 in resorcinol reactor increased phenol removal efficiency to 95% indicating that resorcinol induces phenol degradation. When both resorcinol and catechol were fed to the resorcinol acclimated reactor, it was observed that resorcinol degradation was inhibited by catechol. Catechol acclimated reactor could degrade phenol readily when added as mono substrate indicating that it may be an intermediate in catechol degradation. In binary mixture studies also catechol reactor could degrade phenol, resorcinol and hydroquinone to 90%. Catechol acclimated reactor exhibits relaxed substrate specificity whereas resorcinol acclimated reactor exhibits rigid substrate specificity for phenol as well as other isomers.  相似文献   

11.
Two strains of Alcaligenes denitrificans, designated BRI 3010 and BRI 6011, were isolated from polychlorinated biphenyl (PCB)-contaminated soil using 2,5-dichlorobenzoic acid (2,5-DCBA) and 2,4-DCBA, respectively, as sole carbon and energy sources. Both strains degraded 2-chlorobenzoic acid (2-CBA), 2,3-DCBA, and 2,5-DCBA, and were unable to degrade 2,6-DCBA. BRI 6011 alone degraded 2,4-DCBA. Growth of BRI 6011 in yeast extract and 2,6-DCBA induced pyrocatechase activity, but 2,6-DCBA was not degraded, suggesting the importance of an unsubstituted carbon six of the aromatic ring. Metabolism of the chlorinated substrates resulted in the stoichiometric release of chloride, and degradation proceeded by intradiol cleavage of the aromatic ring. Growth of both strains on 2,5-DCBA induced pyrocatechase activities with catechol and chlorocatechols as substrates. In contrast to dichlorobenzoic acids, growth on 2-CBA, benzoic acid, mono- and dihydroxybenzoic acids induced a pyrocatechase activity against catechol only. Although 2,4-DCBA was a more potent inducer of both pyrocatechase activities, its utilization by BRI 6011 was inhibited by 2,5-DCBA. Specific uptake rates using resting cells were highest with 2-CBA, except when the resting cells had been previously grown on 2,5-DCBA, in which case 2,5-DCBA was the preferred substrate. The higher rates of 2,5-DCBA uptake obtained by growth on that substrate, suggested the existence of a separately induced uptake system for 2,5-DCBA.  相似文献   

12.
Cultivation of Acholeplasma laidlawii cells in media containing unsaturated fatty acids results in changes of the physiological state of the membrane lipid bilayer due to preferable incorporation of an unsaturated fatty acid into lipids. The lipids are capable to regulate the transport activity since the transport rates for glucose, 3-O-methyl-C-glucose, glucerol and erythritol change considerably when the cells are cultivated in media containing different unsaturated fatty acids. The transport activity is also affected by the length of the carbon chain, the degree of the fatty acid saturation and the presence of cholesterol. At the same time the activation energy of the transport activity also changes, which suggests that the regulation by lipids (presumably local changes of the physical properties of lipid domen) is involved in the process of the carrier association with the substrate and/or in translocation of this complex through the membrane.  相似文献   

13.
Microorganisms known to hydroxylate alkaloids, amino acids, and aromatic substrates were examined for their potential to hydroxylate 17 beta-estradiol and estrone. Thin-layer chromatography of fermentation extracts revealed a wide range of steroid products. Aspergillus alliaceus (UI 315) was the only culture capable of producing good yields of catechol estrogens with 17 beta-estradiol. The organism also transformed estrone but not to catechol products. Analytical experiments with high-performance liquid chromatography revealed that A. alliaceus formed 4- and 2-hydroxyestradiol with yields of 45 and 16%, respectively. A preparative-scale incubation was conducted in 2 liters of medium containing 1 g of 17 beta-estradiol as substrate. 4-Hydroxyestradiol was isolated and identified by proton nuclear magnetic resonance and high-resolution mass spectrometry. Ascorbic acid was added to microbial reaction mixtures as an antioxidant to prevent the decomposition of unstable catechol estrogen metabolites. The microbial transformation of 17 beta-estradiol by A. alliaceus provides an efficient one-step method for the preparation of catechol estrogens.  相似文献   

14.
One-step conversion of aniline, phenol and some of their monochlorinated derivatives into the corresponding catechols by resting pre-adapted cells of the Rhodococcus mutant strain AM 144 (defective in synthesis of catechol 1,2-dioxygenase) was shown to depend on the availability of an additional metabolizable carbon substrate, e.g. glucose or acetate. A stoichiometric relation existed between the amount of the latter compounds added and the amount of aniline (or phenol, respectively) converted into catechol suggesting that the primary function of the cosubstrates was to provide reducing power to the oxygenative transformation reaction. The observed cosubstrate-dependence generally parallels that seen in previous studies on turnover of different monochloroaromatic non-growth substrates by aromatics-utilizing Rhodococcus wildtype-strains. Cell cultures of strain AM 144 growing at the expense of acetate also proved able to convert aniline into catechol. Typically, growth of the cells was retarded during the phase of aniline transformation as compared to the respective control cultures. Based on the results of these model experiments, it was concluded that (i) in natural microbial communities cometabolically active bacteria would hardly enrich under cometabolic conditions over fast-growing non-cometabolizing bacteria if the latter organisms will tolerate the particular non-growth substrate, and (ii) cometabolizing bacteria would have a selective advantage only if the non-growth substrate to be transformed is a toxic one or if it can serve as a potential nutrient source (e.g., of nitrogen or sulfur).Abbreviations MCA monochloroaniline - MCP monochlorophenol - MCC monochlorocatechol - TLC thin-layer chromatography - MS mass spectrometry - GLC gas-liquid chromatography - UV ultraviolet (range of the spectrum)  相似文献   

15.
Microorganisms known to hydroxylate alkaloids, amino acids, and aromatic substrates were examined for their potential to hydroxylate 17 beta-estradiol and estrone. Thin-layer chromatography of fermentation extracts revealed a wide range of steroid products. Aspergillus alliaceus (UI 315) was the only culture capable of producing good yields of catechol estrogens with 17 beta-estradiol. The organism also transformed estrone but not to catechol products. Analytical experiments with high-performance liquid chromatography revealed that A. alliaceus formed 4- and 2-hydroxyestradiol with yields of 45 and 16%, respectively. A preparative-scale incubation was conducted in 2 liters of medium containing 1 g of 17 beta-estradiol as substrate. 4-Hydroxyestradiol was isolated and identified by proton nuclear magnetic resonance and high-resolution mass spectrometry. Ascorbic acid was added to microbial reaction mixtures as an antioxidant to prevent the decomposition of unstable catechol estrogen metabolites. The microbial transformation of 17 beta-estradiol by A. alliaceus provides an efficient one-step method for the preparation of catechol estrogens.  相似文献   

16.
Cells of Nocardia corallina ATCC 4273 form multiply branched coenocytic mycelia and subsequent fragment to spherical cells when grown on solidified complex media. In liquid shake cultures using complex media the organisms grow into pleomorphic but seldomly branched rods, divide as rods and then the rods fragment to spheres as the stationary phase is reached. In a defined liquid medium with glucose as carbon source, the organisms divide entively as spheres at a doubling time of 44 hrs. The addition of L-tyrosine, some fatty acids and tricarboxylic acid cycle intermediates or fructose to the glucose medium caused the cells to grow at considerably faster growth rates (2.8-8.5 hrs doubling times) and to undergo the shphre-rod-shpere growth cycle. Other amino acids, fatty acids or surgars added singly to the glucose medium did not produce the sphere to rod morphology change. Some amino acids when added to the medium in pairs effected sphere to rod morphopoiesis. None of these amino acids alone were effectors. Some of the culture grew as rods and the remainder as spheres when isoleucine and valine were added to the glucose medium. No other amino acid combination tested gave this result. The reason for the mixed growth response was traced to inhomogeneity of the parent culture. The life cycle of N. corallina is illustrated in a series of photomicrographs of two slide cultures.  相似文献   

17.
Small sediment cores were used to determine the turnover of a range of carbon substrates, particularly volatile fatty acids, by bentic bacteria. Volatile fatty acids were determined using an HPLC sytem in cojunction with a conductivity detector. At the low eluent strength used 1 μM acetate was detected with ease. Small cores were used in an attempt to maintain the natural partial pressure of hydrogen, an important factor in the control of anerobic metabolism of fatty acids. Although this is preferable to the disturbance of the sediment which occurs if it is resuspended a a slurry, problems are encountered at low substrate concentrations. The time taken for the added substrate to equilibrate in both radial and vertical planes may result in turnover times which vary with the incubation time used. Reduction of the qunatity of added substrate and increased replication may improve the accuracy of the estimates obtained, but more serious consideration must be given to the availability of the substrates to the benthic bacteria.  相似文献   

18.
Stable carbon isotope analysis of biomass and analyses of phospholipid fatty acids (PLFA), glycolipid fatty acids (GLFA), and mycolic acids were used to characterize mixed-substrate utilization by Mycobacterium frederiksbergense LB501T under various substrate regimens. The distinct (13)C contents of anthracene and glucose as representatives of typical hydrophobic pollutants and naturally occurring organic compounds, respectively, were monitored during formation into biomass and used to quantify the relative contributions of the two carbon sources to biomass formation. Moreover, the influence of mixed-substrate utilization on PLFA, GLFA, and mycolic acid profiles and cell surface hydrophobicity was investigated. Results revealed that M. frederiksbergense LB501T degrades anthracene and forms biomass from it even in the presence of more readily available dissolved glucose. The relative ratios of straight-chain saturated PLFA to the corresponding unsaturated PLFA and the total fraction of saturated cyclopropyl-branched PLFA of M. frederiksbergense LB501T depended on the carbon source and the various rates of addition of mixed substrates, whereas no such trend was observed with GLFA. Higher proportions of anthracene in the carbon source mixture led to higher cell surface hydrophobicities and more-hydrophobic mycolic acids, which in turn appeared to be valuable indicators for substrate utilization by M. frederiksbergense LB501T. The capability of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria to utilize readily available substrates besides the poorly available PAHs favors the buildup of PAH-degrading biomass. Feeding of supplementary carbon substrates may therefore promote bioremediation, provided that it sustains the pollutant-degrading population rather than other members of the microbial community.  相似文献   

19.
During the oxidation of various mixtures of glucose and aromatic substrates by four strains of Pseudomonas putida, diauxic growth was not observed. Strain A3.12 grew faster on benzoate than on glucose, whereas three other strains showed faster growth on glucose than on the aromatic test substrates. Growth rates on mixtures of glucose and aromatics were intermediate between those on the single substrates.The presence of glucose in media containing aromatic substrates accelerated in the bacteria the appearance of the ability to oxidize aromatic substrates. During growth of the organisms on binary mixtures of aromatics, simultaneous utilization of these compounds occurred, the utilization ratio depending on the quality of the compounds as carbon and energy sources. Addition of glucose to dual aromatic substrate media greatly increased the utilization ratio in favour of the better aromatic substrate.With decreasing concentration of glucose in relation to that of aromatic substrates, the rate of carbon assimilation from glucose increased. Enzymological and radiochemical studies demonstrated that even in the presence of an excess of aromatic substrates, glucose was exclusively catabolized via the 2-keto-3-deoxy-6-phosphogluconate pathway. In contrast, the rate of carbon assimilation from 14C-ring-labelled benzoate and anisate was unaffected by the presence of an excess of glucose.Abbreviations KDPG 2-keto-3-deoxy-6-phosphogluconate - PP pentose-phosphate - OD optical density  相似文献   

20.
The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-CP) they degraded partially. The analysis of the fatty acid profiles indicated that adaptive mechanisms of bacteria depended on earlier exposure to phenol, which isomer they degraded, and on incubation time. In bacteria unexposed to phenol the permeability and structure of their membranes could be modified through the increase of hydroxylated and cyclopropane fatty acids, and straight-chain and hydroxylated fatty acids under 2-CP, 3-CP and 4-CP exposure, respectively. In the exposed cells, regardless of the isomer they degraded, the most important changes were connected with the increase of the contribution of branched fatty acid on day 4 and the content of hydroxylated fatty acids on day 7. The changes, particularly in the proportion of branched fatty acids, could be a good indicator for assessing the progress of the degradation of monochlorophenols by S. maltophilia KB2. In comparison, in phenol-degrading cells the increase of cyclopropane and straight-chain fatty acid content was established. These findings indicated the degradative potential of the tested strain towards the co-metabolic degradation of persistent chlorophenols, and extended the current knowledge about the adaptive mechanisms of these bacteria to such chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号