首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this study, we investigated how the presence of anionic lipids influenced the stability and folding properties of the potassium channel KcsA. By using a combination of gel electrophoresis, tryptophan fluorescence and acrylamide quenching experiments, we found that the presence of the anionic lipid phosphatidylglycerol (PG) in a phosphatidylcholine (PC) bilayer slightly stabilized the tetramer and protected it from trifluoroethanol-induced dissociation. Surprisingly, the presence of phosphatidic acid (PA) had a much larger effect on the stability of KcsA and this lipid, in addition, significantly influenced the folding properties of the protein. The data indicate that PA creates some specificity over PG, and that it most likely stabilizes the tetramer via both electrostatic and hydrogen bond interactions.  相似文献   

2.
The E71 residue is buried near the selectivity filter in the KcsA K+ channel and forms a carboxyl-carboxylate bridge with D80. We have investigated the importance of E71 by examining neutralization mutants at this position using biochemical and electrophysiological methods. E71 mutations differentially destabilize the detergent-solubilized tetramer; among them, the E71V neutralization mutant has a relatively subtle effect. The E71V channel displays electrical activity when reconstituted into planar lipid bilayers. In single channel recordings, the mutant retains K+/Na+ selectivity, and its conductance in the outward direction is unaltered. Some conduction properties are changed: inward conductance is increased. Our results show that that the E71 side chain is not a primary determinant of ion selectivity or conduction in the wild-type channel, either directly or through the E71:D80 carboxyl-carboxylate bridge.  相似文献   

3.
Furini S  Beckstein O  Domene C 《Proteins》2009,74(2):437-448
Previous studies have reported that the KcsA potassium channel has an osmotic permeability coefficient of 4.8 x 10(-12) cm3/s, giving it a significantly higher osmotic permeability coefficient than that of some membrane channels specialized in water transport. This high osmotic permeability is proposed to occur when the channel is depleted of potassium ions, the presence of which slow down the water permeation process. The atomic structure of the potassium-depleted KcsA channel and the mechanisms of water permeation have not been well characterized so far. Here, all-atom molecular dynamics simulations, in conjunction with an umbrella sampling strategy and a nonequilibrium approach to simulate pressure gradients are employed to illustrate the permeation of water in the absence of ions through the KcsA K+ channel. Equilibrium molecular dynamics simulations (95 ns combined total length) identified a possible structure of the potassium-depleted KcsA channel, and umbrella sampling calculations (160 ns combined total length) revealed that this structure is not permeable by water molecules moving along the channel axis. The simulation of a pressure gradient across the channel (30 ns combined total length) identified an alternative permeation pathway with a computed osmotic permeability of approximately (2.7 +/- 0.9) x 10(-13) cm3/s. Water fluxes along this pathway did not proceed through collective water motions or transitions to vapor state. All of the major results of this study were robust against variations in a wide set of simulation parameters (force field, water model, membrane model, and channel conformation).  相似文献   

4.
Valiyaveetil FI  Zhou Y  MacKinnon R 《Biochemistry》2002,41(35):10771-10777
Lipid molecules surround an ion channel in its native environment of cellular membranes. The importance of the lipid bilayer and the role of lipid protein interactions in ion channel structure and function are not well understood. Here we demonstrate that the bacterial potassium channel KcsA binds a negatively charged lipid molecule. We have defined the potential binding site of the lipid molecule on KcsA by X-ray crystallographic analysis of a complex of KcsA with a monoclonal antibody Fab fragment. We also demonstrate that lipids are required for the in vitro refolding of the KcsA tetramer from the unfolded monomeric state. The correct refolding of the KcsA tetramer requires lipids, but it is not dependent on negatively charged lipids as refolding takes place in the absence of such lipids. We confirm that the presence of negatively charged lipids is required for ion conduction through the KcsA potassium channel, suggesting that the lipid bound to KcsA is important for ion channel function.  相似文献   

5.
6.
Potassium channels are membrane proteins that selectively conduct K(+) across cellular membranes. The narrowest part of their pore, the selectivity filter, is responsible for distinguishing K(+) from Na(+), and can also act as a gate through a mechanism known as C-type inactivation. It has been proposed that a conformation of the KcsA channel obtained by crystallization in presence of low concentration of K(+) (PDB 1K4D) could correspond to the C-type inactivated state. Here, we show using molecular mechanics simulations that such conformation has little ion-binding affinity and that ions do not contribute to its stability. The simulations suggest that, in this conformation, the selectivity filter is mostly occupied by water molecules. Whether such ion-free state of the KcsA channel is physiologically accessible and representative of the inactivated state of eukaryotic channels remains unclear.  相似文献   

7.
Nuclear magnetic resonance (NMR) studies of large membrane-associated proteins are limited by the difficulties in preparation of stable protein-detergent mixed micelles and by line broadening, which is typical of these macroassemblies. We have used the 68-kDa homotetrameric KcsA, a thermostable N-terminal deletion mutant of a bacterial potassium channel from Streptomyces lividans, as a model system for applying NMR methods to membrane proteins. Optimization of measurement conditions enabled us to perform the backbone assignment of KcsA in SDS micelles and establish its secondary structure, which was found to closely agree with the KcsA crystal structure. The C-terminal cytoplasmic domain, absent in the original structure, contains a 14-residue helix that could participate in tetramerization by forming an intersubunit four-helix bundle. A quantitative estimate of cross- relaxation between detergent and KcsA backbone amide protons, together with relaxation and light scattering data, suggests SDS-KcsA mixed micelles form an oblate spheroid with approximately 180 SDS molecules per channel. K(+) ions bind to the micelle-solubilized channel with a K(D) of 3 +/- 0.5 mM, resulting in chemical shift changes in the selectivity filter. Related pH-induced changes in chemical shift along the "outer" transmembrane helix and the cytoplasmic membrane interface hint at a possible structural explanation for the observed pH-gating of the potassium channel.  相似文献   

8.
The ability of an ion channel to open in response to a defined stimulus is central to its function. In ligand-gated channels, pore opening is conferred through transduction of a conformational change in a gating domain to the helices of the pore. Here, we present the construction of a designed cyclic nucleotide-gated (CNG) channel, named KcsA-CNG, by addition of a prokaryotic cyclic nucleotide-binding domain to a KcsA-derived K+ channel. This channel is functional in lipid bilayers at physiological pH and has the combined properties of both of its parent-derived components. It conducts K+ and is blocked by the K+ channel inhibitors Na+ and agitoxin-2. Channel open times are increased by about two orders of magnitude compared to wild-type KcsA. The average number of open channels increases by approximately 50% upon addition of cAMP. Although the absolute open probabilities are somewhat variable from one channel to the next, the property of cyclic nucleotide sensitivity is very reproducible. An apparent Kd value of approximately 90 nM was estimated. The successful construction of a cyclic nucleotide-gated KcsA K+ channel suggests that it should be possible to produce channels that will respond to novel ligands.  相似文献   

9.
A set of TROSY-HNCO (tHNCO)-based 3D experiments is presented for measuring 15N relaxation parameters in large, membrane-associated proteins, characterized by slow tumbling times and significant spectral overlap. Measurement of backbone 15N R 1, R , 15N–{1H} NOE, and 15N CSA/dipolar cross correlation is demonstrated and applied to study the dynamic behavior of the homotetrameric KcsA potassium channel in SDS micelles under conditions where this channel is in the closed state. The micelle-encapsulated transmembrane domain, KcsATM, exhibits a high degree of order, tumbling as an oblate ellipsoid with a global rotational correlation time, τc = 38 ± 2.5 ns, at 50 °C and a diffusion anisotropy, , corresponding to an aspect ratio a/b ≥ 1.4. The N- and C-terminal intracellular segments of KcsA exhibit considerable internal dynamics (S 2 values in the 0.2–0.45 range), but are distinctly more ordered than what has been observed for unstructured random coils. Relaxation behavior in these domains confirms the position of the C-terminal helix, and indicates that in SDS micelles, this amphiphilic helix does not associate into a stable homotetrameric helical bundle. The relaxation data indicate the absence of elevated backbone dynamics on the ps–ns time scale for the 5-residue selectivity filter, which selects K+ ions to enter the channel. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at . An erratum to this article can be found at  相似文献   

10.
K(+) channels play essential roles in regulating membrane excitability of many diverse cell types by selectively conducting K(+) ions through their pores. Many diverse molecules can plug the pore and modulate the K(+) current. Quaternary ammonium (QA) ions are a class of pore blockers that have been used for decades by biophysicists to probe the pore, leading to important insights into the structure-function relation of K(+) channels. However, many key aspects of the QA-blocking mechanisms remain unclear to date, and understanding these questions requires high resolution structural information. Here, we address the question of whether intracellular QA blockade causes conformational changes of the K(+) channel selectivity filter. We have solved the structures of the KcsA K(+) channel in complex with tetrabutylammonium (TBA) and tetrabutylantimony (TBSb) under various ionic conditions. Our results demonstrate that binding of TBA or TBSb causes no significant change in the KcsA structure at high concentrations of permeant ions. We did observe the expected conformational change of the filter at low concentration of K(+), but this change appears to be independent of TBA or TBSb blockade.  相似文献   

11.
12.
Zhou Y  MacKinnon R 《Biochemistry》2004,43(17):4978-4982
The hydrophobic cell membrane interior presents a large energy barrier for ions to permeate. Potassium channels reduce this barrier by creating a water-filled cavity at the middle of their ion conduction pore to allow ion hydration and by directing the C-terminal "end charge" of four alpha-helices toward the water-filled cavity. Here we have studied the interaction of monovalent cations with the cavity of the KcsA K(+) channel using X-ray crystallography. In these studies, Tl(+) was used as an analogue for K(+) and the total ion-stabilization energy for Tl(+) in the cavity was estimated by measuring its binding affinity. Binding affinity for the Na(+) ion was also measured, revealing a weak selectivity ( approximately 7-fold) favoring Tl(+) over Na(+). The structures of the cavity containing Na(+), K(+), Tl(+), Rb(+), and Cs(+) are compared. These results are consistent with a fairly large (more negative than -100 mV) electrostatic potential inside the cavity, and they also imply the presence of a weak nonelectrostatic component to a cation's interaction with the cavity.  相似文献   

13.
Sequence-function analysis of K(+)-selective channels was carried out in the context of the 3.2 A crystal structure of a K(+) channel (KcsA) from Streptomyces lividans (Doyle et al., 1998). The first step was the construction of an alignment of a comprehensive set of K(+)-selective channel sequences forming the putative permeation path. This pathway consists of two transmembrane segments plus an extracellular linker. Included in the alignment are channels from the eight major classes of K(+)-selective channels from a wide variety of species, displaying varied rectification, gating, and activation properties. Segments of the alignment were assigned to structural motifs based on the KcsA structure. The alignment's accuracy was verified by two observations on these motifs: 1), the most variability is shown in the turret region, which functionally is strongly implicated in susceptibility to toxin binding; and 2), the selectivity filter and pore helix are the most highly conserved regions. This alignment combined with the KcsA structure was used to assess whether clusters of contiguous residues linked by hydrophobic or electrostatic interactions in KcsA are conserved in the K(+)-selective channel family. Analysis of sequence conservation patterns in the alignment suggests that a cluster of conserved residues is critical for determining the degree of K(+) selectivity. The alignment also supports the near-universality of the "glycine hinge" mechanism at the center of the inner helix for opening K channels. This mechanism has been suggested by the recent crystallization of a K channel in the open state. Further, the alignment reveals a second highly conserved glycine near the extracellular end of the inner helix, which may be important in minimizing deformation of the extracellular vestibule as the channel opens. These and other sequence-function relationships found in this analysis suggest that much of the permeation path architecture in KcsA is present in most K(+)-selective channels. Because of this finding, the alignment provides a robust starting point for homology modeling of the permeation paths of other K(+)-selective channel classes and elucidation of sequence-function relationships therein. To assay these applications, a homology model of the Shaker A channel permeation path was constructed using the alignment and KcsA as the template, and its structure evaluated in light of established structural criteria.  相似文献   

14.
Here we present functional evidence for involvement of poly-(R)-3-hydroxybutyrate (PHB) and inorganic polyphosphate (polyP) in ion conduction and selection at the intracellular side of the Streptomyces lividans potassium channel, KcsA. At < or = 25 degrees C, KcsA forms channels in planar bilayers that display signal characteristics of PHB/polyP channels at the intracellular side; i.e., a preference for divalent Mg(2+) cations at pH 7.2, and a preference for monovalent K+ cations at pH 6.8. Between 25 and 26 degrees C, KcsA undergoes a transition to a new conformation in which the channel exhibits high selectivity for K+, regardless of solution pH. This suggests that basic residues of the C-terminal polypeptides have moved closer to the polyP end unit, reducing its negative charge. The data support a supramolecular structure for KcsA in which influx of ions is prevented by the selectivity pore, whereas efflux of K+ is governed by a conductive core of PHB/polyP in partnership with the C-terminal polypeptide strands.  相似文献   

15.
Potassium channels fluctuate between closed and open states. The detailed mechanism of the conformational changes opening the intracellular pore in the K+ channel from Streptomyces lividans (KcsA) is unknown. Applying Monte Carlo normal mode following, we find that gating involves rotation and unwinding of the TM2 bundle, lateral movement of the TM2 helices away from the channel axis, and disappearance of the TM2 bundle. The open-state conformation of KcsA exhibits a very wide inner vestibule, with a radius approximately 5-7 A and inner helices bent at the A98-G99 hinge. Computed conformational changes demonstrate that spin labeling and X-ray experiments illuminate different stages in gating: transition begins with clockwise rotation of the TM2 helices ending at a final state with the TM2 bend hinged near residues A98-G99. The concordance between the computational and experimental results provides atomic-level insights into the structural rearrangements of the channel's inner pore.  相似文献   

16.
Guidoni L  Torre V  Carloni P 《FEBS letters》2000,477(1-2):37-42
Molecular dynamics simulations and electrostatic modeling are used to investigate structural and dynamical properties of the potassium ions and of water molecules inside the KcsA channel immersed in a membrane-mimetic environment. Two potassium ions, initially located in the selectivity filter binding sites, maintain their position during 2 ns of dynamics. A third potassium ion is very mobile in the water-filled cavity. The protein appears engineered so as to polarize water molecules inside the channel cavity. The resulting water induced dipole and the positively charged potassium ion within the cavity are the key ingredients for stabilizing the two K(+) ions in the binding sites. These two ions experience single file movements upon removal of the potassium in the cavity, confirming the role of the latter in ion transport through the channel.  相似文献   

17.
Sequence similarity among and electrophysiological studies of known potassium channels, along with the three-dimensional structure of the Streptomyces lividans K(+) channel (KcsA), support the tenet that voltage-gated K(+) channels (Kv channels) consist of two distinct modules: the "voltage sensor" module comprising the N-terminal portion of the channel up to and including the S4 transmembrane segment and the "pore" module encompassing the C-terminal portion from the S5 transmembrane segment onward. To substantiate this modular design, we investigated whether the pore module of Kv channels may be replaced with the pore module of the prokaryotic KcsA channel. Biochemical and immunocytochemical studies showed that chimeric channels were expressed on the cell surface of Xenopus oocytes, demonstrating that they were properly synthesized, glycosylated, folded, assembled, and delivered to the plasma membrane. Unexpectedly, surface-expressed homomeric chimeras did not exhibit detectable voltage-dependent channel activity upon both hyperpolarization and depolarization regardless of the expression system used. Chimeras were, however, strongly dominant-negative when coexpressed with wild-type Kv channels, as evidenced by the complete suppression of wild-type channel activity. Notably, the dominant-negative phenotype correlated well with the formation of stable, glycosylated, nonfunctional, heteromeric channels. Collectively, these findings imply a structural compatibility between the prokaryotic pore module and the eukaryotic voltage sensor domain that leads to the biogenesis of non-responsive channels. Our results lend support to the notion that voltage-dependent channel gating depends on the precise coupling between both protein domains, probably through a localized interaction surface.  相似文献   

18.
2,2,2-Trifluoroethanol (TFE) effectively destabilizes the otherwise highly stable tetrameric structure of the potassium channel KcsA, a predominantly alpha-helical membrane protein [Valiyaveetil, F. I., Zhou, Y., and MacKinnon, R. (2002) Biochemistry 41, 10771-10777]. Here, we report that the effects on the protein structure of increasing concentrations of TFE in detergent solution include two successive protein concentration-dependent, cooperative transitions. In the first of such transitions, occurring at lower TFE concentrations, the tetrameric KcsA simultaneously increases the exposure of tryptophan residues to the solvent, partly loses its secondary structure, and dissociates into its constituent subunits. Under these conditions, simple dilution of the TFE permits a highly efficient refolding and tetramerization of the protein in the detergent solution. Moreover, following reconstitution into asolectin giant liposomes, the refolded protein exhibits nativelike potassium channel activity, as assessed by patch-clamp methods. Conversely, the second cooperative transition occurring at higher TFE concentrations results in the irreversible denaturation of the protein. These results are interpreted in terms of a protein and TFE concentration-dependent reversible equilibrium between the folded tetrameric protein and partly unfolded monomeric subunits, in which folding and oligomerization (or unfolding and dissociation in the other direction of the equilibrium process) are seemingly coupled processes. At higher TFE concentrations this is followed by the irreversible conversion of the unfolded monomers into a denatured protein form.  相似文献   

19.
In this study we have used electrospray ionization mass spectrometry (ESI-MS) to investigate interactions between the bacterial K(+) channel KcsA and membrane phospholipids. KcsA was reconstituted into lipid vesicles of variable lipid composition. These vesicles were directly analyzed by ESI-MS or mixed with trifluoroethanol (TFE) before analysis. In the resulting mass spectra, non-covalent complexes of KcsA and phospholipids were observed with an interesting lipid specificity. The anionic phosphatidylglycerol (PG), and, to a lesser extent, the zwitterionic phosphatidylethanolamine (PE), which both are abundant bacterial lipids, were found to preferentially associate with KcsA as compared to the zwitterionic phosphatidylcholine (PC). These preferred interactions may reflect the differences in affinity of these phospholipids for KcsA in the membrane.  相似文献   

20.
Adsorption of small chain alcohols into lipid membranes significantly changes the conformational states of intrinsic membrane proteins. In this study, the effects of membrane-active strong cosolvent hexafluoroisopropanol (HFIP) on the intrinsic tetrameric stability of potassium channel KcsA were investigated. Presence of acidic phosphatidylglycerol (PG) in non-bilayer phosphatidylethanolamine (PE) or bilayer phosphatidylcholine (PC) significantly increased the tetrameric stability compared to zwitterionic pure PC bilayers. The stabilizing effect of PG in both lipid bilayers was completely abolished upon deletion of the membrane-anchored N-terminus. Tryptophan fluorescence and circular dichroism experiments indicated that HFIP destabilizes the tetramer possibly via drastic changes in the lateral pressure profile close to the membrane-water interface. The data suggest that HFIP disturbs the ionic, H-bonding and hydrophobic interactions among KcsA subunits where N-terminus presumably plays a crucial role in determining the channel proper folding and tetrameric structure via ionic/H-bond interactions between the helix dipole and the membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号