首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although commonly related to nutrient deprivation, the cause of the formation of the necrotic core in the multicellular tumour spheroids is still a controversial issue. We propose a simple model for the cell ATP production that assumes glucose and lactate as the only fuel substrates, and describes the main reactions occurring in the glycolytic and the oxidative pathways. Under the key assumption that cell death occurs when ATP production falls to a critical level, we formulate a multiscale model that integrates the energy metabolism at the cellular level with the diffusive transport of the metabolites in the spheroid mass. The model has been tested by predicting the measurements of the necrotic radius obtained by Freyer and Sutherland (1986a) in EMT6/Ro spheroids under different concentrations of glucose and oxygen in the culture medium. The results appear to be in agreement with the hypothesis that necrosis is caused by ATP deficit.  相似文献   

2.
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived ω-aminoaldehydes to the corresponding ω-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with β-nicotinamide adenine dinucleotide (NAD+) at 2.4 and 2.15 Å resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD+ as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD+ binding site. While the NAD+ binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into γ-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, β-alanine betaine and γ-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.  相似文献   

3.
In previous studies, exogenous ethanol (3 mmol EtOH/kg egg) caused a 1.6-fold increase in chick brain homocysteine (HoCys) levels at 11 days of development and the mixture of 3 mmol EtOH/kg egg and 34 μmol folic acid/kg egg attenuated EtOH-induced increases in chick brain HoCys levels. Because HoCys is converted to methionine utilizing the methyl donor, 5-methyltetrahydrofolate (5-methyl THF), we studied whether exogenous ethanol (3 mmol EtOH/kg egg) or the mixture of 3 mmol EtOH/kg egg and 34 μmol 5-methyl THF/kg egg inhibited chick brain 10-formyltetrahydrofolate dehydrogenase (10-FTHF DH; EC 1.5.1.6) activities and brain N5, N10-methylenetetrahydrofolate reductase (MTHFR; EC 1.5.1.20) activities at 11 days of development. Three daily dosages of 3 mmol EtOH/kg egg (E0–2) caused approximately a 7-fold reduction in brain 10-FTHF DH activities and approximately a 1.9-fold reduction in brain MTHFR activities as compared to controls at 11 days of development (p ≤ 0.05). Because HoCys is also removed by the transsulfuration pathway, which synthesizes taurine, we studied whether exogenous ethanol (3 mmol EtOH/kg egg) or the mixture of 3 mmol EtOH/kg egg and 34 μmol 5-methyl THF/kg egg influenced chick brain taurine levels. In EtOH-treated and EtOH and 5-methyl THF-treated embryos, brain taurine levels decreased by approximately 5.5-fold and 6.2-fold as compared to controls, respectively (p ≤ 0.05). Exogenous 5-methyl THF failed to attenuate EtOH-induced decreased brain taurine levels at 11 days of development.  相似文献   

4.
The assimilation of nitrate under dark-N2 and dark-O2 conditions in Zea mays leaf tissue was investigated using colourimetric and 15N techniques for the determination of organic and inorganic nitrogen. Studies using 15N indicated that nitrate was assimilated under dark conditions. However, the rate of nitrate assimilation in the dark was only 28% of the rate under non-saturating light conditions. No nitrite accumulated under dark aerobiosis, even though nitrate reduction occurred under these conditions. The pattern of nitrite accumulation in leaf tissue in response to dark-N2 conditions consisted of three phases: an initial lag phase, followed by a period of rapid nitrite accumulation and finally a phase during which the rate of nitrite accumulation declined. After a 1-h period of dark-anaerobiosis, both nitrate reduction and nitrite accumulation declined considerably. However, when O2 was supplied, nitrate reduction was stimulated and the accumulated nitrite was rapidly reduced. Anaerobic conditions stimulated nitrate reduction in leaf tissue after a period of dark-aerobic pretreatment.  相似文献   

5.
Wasilewski M  Wojtczak L 《FEBS letters》2005,579(21):4724-4728
Long-chain N-acylethanolamines (NAEs) have been found to uncouple oxidative phosphorylation and to inhibit uncoupled respiration of rat heart mitochondria [Wasilewski, M., Wieckowski, M.R., Dymkowska, D. and Wojtczak, L. (2004) Biochim. Biophys. Acta 1657, 151-163]. The aim of the present work was to investigate in more detail the mechanism of the inhibitory effects of NAEs on the respiratory chain. In connection with this, we also investigated a possible action of NAEs on the generation of reactive oxygen species (ROS) by respiring rat heart mitochondria. It was found that unsaturated NAEs, N-oleoylethanolamine (N-Ole) and, to a greater extent, N-arachidonoylethanolamine (N-Ara), inhibited predominantly complex I of the respiratory chain, with a much weaker effect on complexes II and III, and no effect on complex IV. Saturated N-palmitoylethanolamine had a much smaller effect compared to unsaturated NAEs. N-Ara and N-Ole were found to decrease ROS formation, apparently due to their uncoupling action. However, under specific conditions, N-Ara slightly but significantly stimulated ROS generation in uncoupled conditions, probably due to its inhibitory effect on complex I. These results may contribute to our better understanding of physiological roles of NAEs in protection against ischemia and in induction of programmed cell death.  相似文献   

6.
7.
We present the outcome of a century of post-bottleneck isolation of a long-lived species, the little spotted kiwi (Apteryx owenii, LSK) and demonstrate that profound genetic consequences can result from protecting few individuals in isolation. LSK were saved from extinction by translocation of five birds from South Island, New Zealand to Kapiti Island 100 years ago. The Kapiti population now numbers some 1200 birds and provides founders for new populations. We used 15 microsatellite loci to compare genetic variation among Kapiti LSK and the populations of Red Mercury, Tiritiri Matangi and Long Islands that were founded with birds from Kapiti. Two LSK native to D''Urville Island were also placed on Long Island. We found extremely low genetic variation and signatures of acute and recent genetic bottleneck effects in all four populations, indicating that LSK have survived multiple genetic bottlenecks. The Long Island population appears to have arisen from a single mating pair from Kapiti, suggesting there is no genetic contribution from D''Urville birds among extant LSK. The Ne/NC ratio of Kapiti Island LSK (0.03) is exceptionally low for terrestrial vertebrates and suggests that genetic diversity might still be eroding in this population, despite its large census size.  相似文献   

8.
Simon Hald 《BBA》2008,1777(5):433-440
When plants experience an imbalance between the absorption of light energy and the use of that energy to drive metabolism, they are liable to suffer from oxidative stress. Such imbalances arise due to environmental conditions (e.g. heat, chilling or drought), and can result in the production of reactive oxygen species (ROS). Here, we present evidence for a novel protective process — feedback redox regulation via the redox poise of the NADP(H) pool. Photosynthetic electron transport was studied in two transgenic tobacco (Nicotiana tabacum) lines — one having reduced levels of ferredoxin NADP+-reductase (FNR), the enzyme responsible for reducing NADP+, and the other reduced levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the principal consumer of NADPH. Both had a similar degree of inhibition of carbon fixation and impaired electron transport. However, whilst FNR antisense plants were obviously stressed, with extensive bleaching of leaves, GAPDH antisense plants showed no visible signs of stress, beyond having a slowed growth rate. Examination of electron transport in these plants indicated that this difference is due to feedback regulation occurring in the GAPDH but not the FNR antisense plants. We propose that this reflects the occurrence of a previously undescribed regulatory pathway responding to the redox poise of the NADP(H) pool.  相似文献   

9.
The dinickel(II) compound [Ni2(μ-OAc)2(OAc)2(μ-H2O)(asy·dmen)2]·2.5H2O, 1; undergoes facile reaction in a 1:2 molar ratio with benzohydroxamic acid (BHA) in ethanol to give the novel nickel(II) tetranuclear hydroxamate complex [Ni4(μ-OAc)3(μ-BA)3(asy·dmen)3][OTf]2·H2O, 2, in which the bridging acetates, bridging two nickel atoms in 1, undergo a carboxylate shift from the μ211 bridging mode of binding to the μ312 bridging three nickel atoms in the tetramer. The structure of complex 2 was determined by single-crystal X-ray crystallography. The two monodentate acetates, water and two bidentate bridging acetates of two moles of complex 1 are replaced by three monodentate bridging acetates and three benzohydroxamates. Three nickel atoms in the tetramer, Ni(2), Ni(3) and Ni(4) are in a N2O4 octahedral environment, while the fourth nickel atom Ni(1) is in an O(6) octahedral environment. The Ni-Ni separations are Ni(1)-Ni(2) = 3.108 Å, Ni(1)-Ni(3) = 3.104 Å and Ni(1)-Ni(4) = 3.110 Å, which are longer than previously studied in dinuclear urease inhibited models but shorter than in the nickel(II) tetrameric glutarohydroxamate complex [Ni4(μ-OAc)2(μ-gluA2)2(tmen)4][OTf]2, isolated and characterized previously in this laboratory. Magnetic studies of the tetrameric complex show that the four Ni(II) ions are ferromagnetically coupled, leading to a total ground spin state ST = 4. Three analogous tetranuclear nickel hydroxamates were prepared from AHA and BHA and the appropriate dinuclear complex with either sy·dmen or asy·dmen as capping ligands.  相似文献   

10.
Khanal RC  Smith NM  Nemere I 《Steroids》2007,72(2):158-164
Phosphate homeostasis is controlled in part by absorption from the intestine, and reabsorption in the kidney. While the effect of Vitamin D metabolites on enterocytes is well documented, in the current study we assess selected responses in primary cultures of kidney cells. Time course studies revealed a rapid stimulation of phosphate uptake in cells treated with 1,25(OH)(2)D(3), relative to controls. Dose-response studies indicated a biphasic curve with optimal stimulation at 300 pM 1,25(OH)(2)D(3) and inhibition at 600 pM seco-steroid. Antibody 099--against the 1,25D(3)-MARRS receptor - abolished stimulation by the steroid hormone. Moreover, phosphate uptake was mediated by the protein kinase C pathway. The metabolite 24,25(OH)(2)D(3), which was found to inhibit the rapid stimulation of phosphate uptake in intestinal cells, had a parallel effect in cultured kidney cells. Finally, the 24,25(OH)(2)D(3) binding protein, catalase, was assessed for longer term down regulation. In both intestinal epithelial cells and kidney cells incubated with 24,25(OH)(2)D(3) for 5-24h, both the specific activity of the enzyme and protein levels were decreased relative to controls, while 1,25(OH)(2)D(3) increased both parameters over the same time periods. We conclude that the Vitamin D metabolites have similar effects in both kidney and intestine, and that 24,25(OH)(2)D(3) may have effects at the level of gene expression.  相似文献   

11.
We studied the effect of CO(2) on the in vitro cultivation of Anisakis simplex, an aquatic parasitic nematode of cetaceans (final hosts) and fish, squid, crustaceans and other invertebrates (intermediate/paratenic hosts), and, occasionally, of man (accidental host). The results showed that a high pCO(2), at a suitable temperature, is vital for the optimum development of these nematodes, at least from the third larval stage (L3) to adult. After 30 days cultivation in air, molting to L4 (fourth larval stage) was reduced to 1/3, while survival was about 1/3 of that when cultivated in air + 5% CO(2). The activity of the CO(2)-fixing enzymes, PEPCK and PEPC, was also studied. Throughout the development of the worms studied, PEPCK activity was much higher than that of PEPC (e.g., 305 vs. 6.8 nmol/min.mg protein, respectively, in L3 collected from the host fish). The activity of these enzymes in the worms cultivated in air + 5% CO(2) was highest during M3, and was also generally higher than that of those cultivated in air only, especially during molting from L3 to L4 (e.g., in recently molted L4, PEPCK activity was 3.7 times greater than that of PEPC 2.9 times greater than when cultivated in air).  相似文献   

12.
Fertilization activates development by stimulating a plethora of ATP consuming processes that must be provided for by an up-regulation of energy production in the zygote. Sperm-triggered Ca2+ oscillations are known to be responsible for the stimulation of both ATP consumption and ATP supply but the mechanism of up regulation of energy production at fertilization is still unclear. By measuring [Ca2+] and [ATP] in the mitochondria of fertilized mouse eggs we demonstrate that sperm entry triggers Ca2+ oscillations in the cytosol that are transduced into mitochondrial Ca2+ oscillations pacing mitochondrial ATP production. This results, during fertilization, in an increase in both [ATP]mito and [ATP]cyto. We also observe the stimulation of ATP consumption accompanying fertilization by monitoring [Ca2+]cyto and [ATP]cyto during fertilization of starved eggs. Our observations reveal that lactate, in contrast to pyruvate, does not fuel mitochondrial ATP production in the zygote. Therefore lactate-derived pyruvate is somehow diverted from mitochondrial oxidation and may be channeled to other metabolic routes. Together with our earlier findings, this study confirms the essential role for exogenous pyruvate in the up-regulation of ATP production at the onset of development, and suggests that lactate, which does not fuel energetic metabolism may instead regulate the intracellular redox potential.  相似文献   

13.
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (Yamamoto et al., 1995). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Δ, fab1tsf, and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Δ mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.  相似文献   

14.
Satomi Miwa 《BBA》2005,1709(3):214-219
The topology of superoxide generation by sn-glycerol 3-phosphate dehydrogenase and complex III in intact Drosophila mitochondria was studied using aconitase inactivation to measure superoxide production in the matrix, and hydrogen peroxide formation in the presence of superoxide dismutase to measure superoxide production from both sides of the membrane. Aconitase inactivation was calibrated using the known rate of matrix superoxide production from complex I. Glycerol phosphate dehydrogenase generated superoxide about equally to each side of the membrane, whereas centre o of complex III in the presence of antimycin A generated superoxide about 30% on the cytosolic side and 70% on the matrix side.  相似文献   

15.
Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50) = 250 nM and kinact = 1.4 × 104 M−1 s−1 for Hg2+ and IC50 = 1.4 μM and kinact = 2 × 102 M−1 s−1 for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50 = 3 and 20 μM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.  相似文献   

16.
Zhao HF  Wang X  Zhang GJ 《FEBS letters》2005,579(6):1551-1556
Lysosomal disintegration is a crucial event for living cells, but mechanisms for the event are still unclear. In this study, we established that the cytosolic extracts could enhance lysosomal osmotic sensitivity and osmotically destabilize the lysosomes. The cytosol also caused the lysosomes to become more swollen in the hypotonic sucrose medium. The results indicate that the cytosol induced an osmotic shock to the lysosomes and an influx of water into the organelle. Since the effects of cytosol on the lysosomes could be abolished by O-tricyclo[5.2.1.0(2,6)]dec-9-yl dithiocarbonate potassium salt (D609), a specific inhibitor of cytosolic phospholipase C (PLC), the PLC might play an important role in the lysosomal osmotic destabilization. The activity of cytosolic PLC and the extent of enzyme latency loss of the cytosol-treated lysosomes exhibited a similar biphasic dependence on the cytosolic Ca2+ concentration. In addition, the cytosol did not osmotically destabilize the lysosomes until the cytosolic calcium ions rose above 100 nM. It suggests that the destabilization effect of cytosol on the lysosomes is Ca(2+)-dependent.  相似文献   

17.
The present study evaluated the effect of 5-hydroxytryptamine (5-HT) on intestinal Na(+)/H(+) exchanger (NHE) activity and the cellular signaling pathways involved in T84 cells. T84 cells express endogenous NHE1 and NHE2 proteins, detected by immunoblotting, but not NHE3. The rank order for inhibition of NHE activity in acid-loaded T84 cells was 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; IC(50)=519 [465, 579] nM)>cariporide (IC(50)=630 [484, 819] nM)>amiloride (IC(50)=19 [16, 24] microM); the NHE3 inhibitor S3226 was found to be devoid of effect. This different inhibitory sensitivity indicates that both NHE1 and NHE2 isoforms may play an active role in Na(+)-dependent intracellular pH (pH(i)) recovery in T84 cells. Short-term exposure (0.5 h) of T84 cells to 5-HT increased NHE activity in a concentration-dependent manner. The stimulation induced by 5-HT (30 microM) was partially inhibited by both WAY 100135 (300 nM) and ketanserin (300 nM), antagonists of 5-HT(1A) and 5-HT(2) receptors, respectively. NHE activity was significantly increased by 8-OH-DPAT and alpha-methyl-5-HT, agonists of, respectively, 5-HT(1A) and 5-HT(2) receptors. An incubation of T84 cells with anti-G(s) and anti-G(beta) antibodies complexed with lipofectin did not prevent the 5-HT-induced stimulation of NHE activity. Overnight treatment with anti-G(ialpha1,2) and anti-G(q/11) antibodies complexed with lipofectin blocked the stimulatory effect induced by 8-OH-DPAT and alpha-methyl-5-HT, respectively. It is concluded that in T84 cells 5-HT enhances intestinal NHE activity through stimulation of G(ialpha1,2)-coupled 5-HT(1A) and G(q/11)-coupled 5-HT(2) receptors.  相似文献   

18.
Caspase-3 is responsible for the cleavage of several proteins including the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Designed on the cleavage site of PARP, Ac-Asp-Glu-Val-Asp-H has been reported as a highly specific inhibitor. To overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of tetra-peptidyl aldehydes, di- and tri-peptidyl caspase-3 inhibitors have been synthesized. Here, the synthesis and the inhibition properties of peptidyl aldehydes Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H are reported. Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H inhibit competitively human caspase-3 activity in vitro with  = 3.6 nM, 18.2 nM, and 109 nM, respectively (pH 7.4 and 25 °C). Moreover, Z-tLeu-Asp-H impairs apoptosis in human DLD-1 colon adenocarcinoma cells without affecting caspase-8. Therefore, Ac-Asp-Glu-Val-Asp-H can be truncated to Z-tLeu-Asp-H retaining nanomolar inhibitory activity in vitro and displaying action in whole cells, these properties reflect the unprecedented introduction of the bulky and lipophilic tLeu residue at the P2 position.  相似文献   

19.
Cen X  Yu L  Yu CA 《FEBS letters》2008,582(4):523-526
The key step of the "protonmotive Q-cycle" mechanism for cytochrome bc1 complex is the bifurcated oxidation of ubiquinol at the Qp site. ISP is reduced when its head domain is at the b-position and subsequent move to the c1 position, to reduce cytochrome c1, upon protein conformational changes caused by the electron transfer from cytochrome b(L) to b(H). Results of analyses of the inhibitory efficacy and the binding affinity, determined by isothermal titration calorimetry, of Pm and Pf, on different redox states of cytochrome bc1 complexes, confirm this speculation. Pm inhibitor has a higher affinity and better efficacy with the cytochrome b(H) reduced complex and Pf binds better and has a higher efficacy with the ISP reduced complex.  相似文献   

20.
Cell migration is crucial for processes such as immune defense, wound healing, or the formation of tumor metastases. Typically, migrating cells are polarized within the plane of movement with lamellipodium and cell body representing the front and rear of the cell, respectively. Here, we address the question of whether this polarization also extends to the distribution of ion transporters such as Na(+)/H(+) exchanger (NHE) and anion exchanger in the plasma membrane of migrating cells. Both transporters are required for locomotion of renal epithelial (Madin-Darby canine kidney, MDCK-F) cells and human melanoma cells since their blockade reduces the rate of migration in a dose-dependent manner. Inhibition of migration of MDCK-F cells by NHE blockers is accompanied by a decrease of pH(i). However, when cells are acidified with weak organic acids, migration of MDCK-F cells is normal despite an even more pronounced decrease of pH(i). Under these conditions, NHE activity is increased so that cells are swelling due to the accumulation of organic anions and Na(+). When exclusively applied to the lamellipodium, blockers of NHE or anion exchange inhibit migration of MDCK-F cells as effectively as when applied to the entire cell surface. When they are directed to the cell body, migration is not affected. These data are confirmed immunocytochemically in that the anion exchanger AE2 is concentrated at the front of MDCK-F cells. Our findings show that NHE and anion exchanger are distributed in a polarized way in migrating cells. They are consistent with important contributions of both transporters to protrusion of the lamellipodium via solute uptake and consequent volume increase at the front of migrating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号