首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor-interacting protein kinase (RIPK) 1 and RIPK3 have emerged as essential kinases mediating a regulated form of necrosis, known as necroptosis, that can be induced by tumor necrosis factor (TNF) signaling. As a consequence, inhibiting RIPK1 kinase activity and repressing RIPK3 expression levels have become commonly used approaches to estimate the contribution of necroptosis to specific phenotypes. Here, we report that RIPK1 kinase activity and RIPK3 also contribute to TNF-induced apoptosis in conditions of cellular inhibitor of apoptosis 1 and 2 (cIAP1/2) depletion or TGF-β-activated kinase 1 (TAK1) kinase inhibition, implying that inhibition of RIPK1 kinase activity or depletion of RIPK3 under cell death conditions is not always a prerequisite to conclude on the involvement of necroptosis. Moreover, we found that, contrary to cIAP1/2 depletion, TAK1 kinase inhibition induces assembly of the cytosolic RIPK1/Fas-associated protein with death domain/caspase-8 apoptotic TNF receptor 1 (TNFR1) complex IIb without affecting the RIPK1 ubiquitylation status at the level of TNFR1 complex I. These results indicate that the recruitment of TAK1 to the ubiquitin (Ub) chains, and not the Ub chains per se, regulates the contribution of RIPK1 to the apoptotic death trigger. In line with this, we found that cylindromatosis repression only provided protection to TNF-mediated RIPK1-dependent apoptosis in condition of reduced RIPK1 ubiquitylation obtained by cIAP1/2 depletion but not upon TAK1 kinase inhibition, again arguing for a role of TAK1 in preventing RIPK1-dependent apoptosis downstream of RIPK1 ubiquitylation. Importantly, we found that this function of TAK1 was independent of its known role in canonical nuclear factor-κB (NF-κB) activation. Our study therefore reports a new function of TAK1 in regulating an early NF-κB-independent cell death checkpoint in the TNFR1 apoptotic pathway. In both TNF-induced RIPK1 kinase-dependent apoptotic models, we found that RIPK3 contributes to full caspase-8 activation independently of its kinase activity or intact RHIM domain. In contrast, RIPK3 participates in caspase-8 activation by acting downstream of the cytosolic death complex assembly, possibly via reactive oxygen species generation.  相似文献   

2.
Smac mimetic promotes apoptosis by neutralizing inhibitor of apoptosis (IAP) proteins and is considered as a promising cancer therapeutic. Although an autocrine/paracrine tumor necrosis factor-α (TNFα) loop has been implicated in Smac mimetic-induced cell death, little is yet known about additional factors that determine sensitivity to Smac mimetic. Using genome-wide gene expression analysis, we identify death receptor 5 (DR5) as a novel key mediator of Smac mimetic-induced apoptosis. Although several cell lines that are sensitive to the Smac mimetic BV6 die in a TNFα-dependent manner, A172 glioblastoma cells undergo BV6-induced apoptosis largely independently of TNFα/TNFR1, as the TNFα-blocking antibody Enbrel or TNFR1 knockdown provide little protection. Yet, BV6-stimulated nuclear factor-κB (NF-κB) activation is critically required for apoptosis, as inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) blocks BV6-induced apoptosis. Unbiased genome-wide gene expression studies in IκBα-SR-overexpressing cells versus vector control cells reveal that BV6 increases DR5 expression in a NF-κB-dependent manner. Importantly, this BV6-stimulated upregulation of DR5 is critically required for apoptosis, as transient or stable knockdown of DR5 significantly inhibits BV6-triggered apoptosis. In addition, DR5 silencing attenuates formation of a RIP1/FADD/caspase-8 cytosolic cell death complex and activation of caspase-8, -3 and -9. By identifying DR5 as a critical mediator of Smac mimetic-induced apoptosis, our findings provide novel insights into the determinants that control susceptibility of cancer cells to Smac mimetic.  相似文献   

3.
The receptor-interacting protein kinase 3 (RIP3) associates with RIP1 in a necrosome complex that can induce necroptosis, apoptosis, or cell proliferation. We analyzed the expression of RIP1 and RIP3 in CD34+ leukemia cells from a cohort of patients with acute myeloid leukemia (AML) and CD34+ cells from healthy donors. RIP3 expression was significantly reduced in most AML samples, whereas the expression of RIP1 did not differ significantly. When re-expressed in the mouse DA1-3b leukemia cell line, RIP3 induced apoptosis and necroptosis in the presence of caspase inhibitors. Transfection of RIP3 in the WEHI-3b leukemia cell line or in the mouse embryonic fibroblasts also resulted in increased cell death. Surprisingly, re-expression of a RIP3 mutant with an inactive kinase domain (RIP3-kinase dead (RIP3-KD)) induced significantly more and earlier apoptosis than wild-type RIP3 (RIP3-WT), indicating that the RIP3 kinase domain is an essential regulator of apoptosis/necroptosis in leukemia cells. The induced in vivo expression of RIP3-KD but not RIP3-WT prolonged the survival of mice injected with leukemia cells. The expression of RIP3-KD induced p65/RelA nuclear factor-κB (NF-κB) subunit caspase-dependent cleavage, and a non-cleavable p65/RelA D361E mutant rescued these cells from apoptosis. p65/RelA cleavage appears to be at least partially mediated by caspase-6. These data indicate that RIP3 silencing in leukemia cells results in suppression of the complex regulation of the apoptosis/necroptosis switch and NF-κB activity.Impairment in cell death pathways represents a general characteristic of most cancer cells. Cells can die through several mechanisms; two such cell death pathways include apoptosis and necrosis, which display distinct characteristics.1 Necrosis can occur in either an incidental or intentional manner as a result of defined signals, and the term necroptosis has been proposed to describe this programmed necrosis.2 Activation of the receptor-interacting protein kinase 1 (RIP1) and 3 (RIP3) proteins in the necrosome complex can induce apoptosis, necroptosis, or cell proliferation after the activation of death receptors, including TNFR1, TRAIL, and FAS.3, 4 RIP1 and RIP3 are serine threonine kinases with strong homology.5 Both proteins are composed of a kinase domain at the N-terminus and a RIP homotypic interaction motif (RHIM) at the C-terminus of RIP3. The RIP1/RIP3 complex can induce necroptosis initiated by cell death receptors of the tumor necrosis factor family. RIP3 binds to RIP1 via their respective RHIM domains, and these proteins form a filamentous structure with characteristics similar to β-amyloids and can cross phosphorylate each other and several downstream targets involved in necroptosis, apoptosis, or nuclear factor-κB (NF-κB) activation.6The role of RIP3 in necroptosis and inflammation has been extensively studied, but its role in cancer remains poorly understood. A previous study in chronic lymphocytic leukemia (CLL) showed that malignant lymphoid cells were resistant to tumor necrosis factor-α (TNFα+Z-VAD-induced (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone) necroptosis and expressed reduced levels of RIP3 and cylindromatosis (CYLD), which regulates RIP1.7 Another study on childhood acute lymphoblastic leukemia reported that RIP1 was necessary to mediate the inhibitor of apoptosis protein-mediated sensitization of blast cells to chemotherapy.8 Autocrine TNFα loops that activate NF-κB through RIP1 have also been described in various cancer cell lines.9, 10Here we report that the expression of RIP3 was decreased in the majority of acute myeloid leukemia (AML) patients examined, whereas the expression of RIP1 remained unaffected. The expression of a RIP3 mutant with an inactivated kinase domain (RIP3-kinase dead (RIP3-KD)) in myeloid cell lines resulted in massive and early apoptosis and the caspase-mediated cleavage of p65/RkelA at a caspase-6 putative consensus site. Moreover, only RIP3-KD prolonged the survival of leukemic mice. Our results show that RIP3 activity regulates the apoptosis/necroptosis switch via its kinase activity in leukemia cells, and that other functions of RIP3 that are independent of its kinase domain modulate apoptosis and NF-κB activity.  相似文献   

4.
In the lymph node (LN) environment, chronic lymphocytic leukemia (CLL) cells display increased NF-κB activity compared with peripheral blood CLL cells, which contributes to chemoresistance. Antagonists of cellular inhibitor of apoptosis proteins (cIAPs) can induce apoptosis in various cancer cells in a tumor necrosis factor-α (TNFα)-dependent manner and are in preclinical development. Smac-mimetics promote degradation of cIAP1 and cIAP2, which results in TNFR-mediated apoptosis via formation of a ripoptosome complex, comprising RIPK1, Fas-associated protein with death domain, FLICE-like inhibitory protein and caspase-8. CD40 stimulation of CLL cells in vitro is used as a model to mimic the LN microenvironment and results in NF-κB activation and TNFα production. In this study, we investigated the response of CLL cells to smac-mimetics in the context of CD40 stimulation. We found that treatment with smac-mimetics results in cIAP1 and cIAP2 degradation, yet although TNFα is produced, this did not induce apoptosis. Despite the presence of all components, the ripoptosome complex did not form upon smac-mimetic treatment in CLL cells. Thus, CLL cells seem to possess aberrant upstream NF-κB regulation that prevents ripoptosome formation upon IAP degradation. Unraveling the exact molecular mechanisms of disturbed ripoptosome formation may offer novel targets for treatment in CLL.  相似文献   

5.
Hepatocellular carcinoma (HCC) usually develops in the context of chronic hepatitis triggered by viruses or toxic substances causing hepatocyte death, inflammation and compensatory proliferation of liver cells. Death receptors of the TNFR superfamily regulate cell death and inflammation and are implicated in liver disease and cancer. Liver parenchymal cell-specific ablation of NEMO/IKKγ, a subunit of the IκB kinase (IKK) complex that is essential for the activation of canonical NF-κB signalling, sensitized hepatocytes to apoptosis and caused the spontaneous development of chronic hepatitis and HCC in mice. Here we show that hepatitis and HCC development in NEMOLPC-KO mice is triggered by death receptor-independent FADD-mediated hepatocyte apoptosis. TNF deficiency in all cells or conditional LPC-specific ablation of TNFR1, Fas or TRAIL-R did not prevent hepatocyte apoptosis, hepatitis and HCC development in NEMOLPC-KO mice. To address potential functional redundancies between death receptors we generated and analysed NEMOLPC-KO mice with combined LPC-specific deficiency of TNFR1, Fas and TRAIL-R and found that also simultaneous lack of all three death receptors did not prevent hepatocyte apoptosis, chronic hepatitis and HCC development. However, LPC-specific combined deficiency in TNFR1, Fas and TRAIL-R protected the NEMO-deficient liver from LPS-induced liver failure, showing that different mechanisms trigger spontaneous and LPS-induced hepatocyte apoptosis in NEMOLPC-KO mice. In addition, NK cell depletion did not prevent liver damage and hepatitis. Moreover, NEMOLPC-KO mice crossed into a RAG-1-deficient genetic background-developed hepatitis and HCC. Collectively, these results show that the spontaneous development of hepatocyte apoptosis, chronic hepatitis and HCC in NEMOLPC-KO mice occurs independently of death receptor signalling, NK cells and B and T lymphocytes, arguing against an immunological trigger as the critical stimulus driving hepatocarcinogenesis in this model.Liver cancer is one of the most common malignancies and the third leading cause of cancer-related deaths worldwide.1, 2 Liver cancer predominantly arises in the context of chronic inflammatory conditions, most notably in virus hepatitis (HBV and HCV).1, 2 Although infectious agents are the primary cause of liver cancer worldwide, the incidence in western countries is rising due to the increase in obesity and non-alcoholic steatohepatitis.3 The pathogenesis of hepatocellular carcinoma (HCC) is incompletely understood and it is plausible that the different underlying aetiologies determine a distinct context for liver carcinogenesis. However, the prevailing universal concept is that continuous liver parenchymal damage and hepatocyte cell death drive compensatory proliferation and within the context of a chronically inflamed liver tissue mutations and epigenetic changes accumulate eventually transforming hepatocytes into malignant cells. Therefore, understanding the tissue-intrinsic processes that determine cell death and chronic inflammation resulting in hepatocarcinogenesis is a critical need in order to design more effective therapeutic strategies.The nuclear factor κB (NF-κB) pathway is implicated in cancer development in particular in the context of chronic inflammation.4, 5 In relation to liver cancer, NF-κB signalling has been implicated in the pathogenesis of hepatitis, liver fibrosis, cirrhosis and HCC.6, 7 The IKK complex, composed of two catalytic subunits, IKK1/IKKα and IKK2/IKKβ, and a regulatory subunit termed NEMO/IKKγ, activates NF-κB by phosphorylating inhibitor of NF-κB (IκB) proteins targeting them for degradation by the proteasome and thus allowing the nuclear accumulation of NF-κB dimers.5 IKK2 is primarily responsible for targeting and degrading IκBα thus inducing canonical NF-κB activation, although the two kinases show some degree of functional redundancy in controlling canonical NF-κB signalling.5, 8 NEMO/IKKγ is indispensable for activation of canonical NF-κB signalling.9, 10, 11NF-κB signalling was proposed to exhibit tumour promoter or tumour suppressor properties in different models of liver cancer. In the Mdr2−/− mouse model of inflammation-driven liver carcinogenesis, NF-κB inhibition caused by transgenic IκBα super–repressor expression in hepatocytes inhibited HCC progression.12 Moreover, hepatocyte-restricted ablation of IKK2 prevented hepatitis and liver tumorigenesis induced by overexpression of lymphotoxins α and β in hepatocytes.13 However, mice with hepatocyte-specific IKK2 ablation developed more tumours induced by a single injection of the chemical carcinogen diethylnitrosamine,14 revealing a tumour suppressor role of NF-κB in this context.Studies in mice lacking NEMO specifically in liver parenchymal cells (LPCs) further supported a tumour suppressor function of IKK/NF-κB signalling in liver cancer. NEMOLPC-KO mice showed spontaneous hepatocyte apoptosis resulting in chronic steatohepatitis and the development of HCC by the age of 1 year.15 LPC-specific ablation of Fas-Associated with Death Domain (FADD or MORT1), an adapter protein essential for the recruitment of caspase-8 to the Death Inducing Signalling Complex and the induction of death receptor-mediated apoptosis,16 prevented both spontaneous and LPS-induced apoptosis of NEMO-deficient hepatocytes and the development of steatohepatitis.15 In addition, LPC-specific knockout of caspase-8 inhibited spontaneous hepatocyte apoptosis and HCC development in NEMOLPC-KO mice, although it caused non-apoptotic hepatocyte death and cholestasis.17 Given the essential role of FADD and caspase-8 in mediating apoptosis downstream of death receptors,16 we hypothesized that death receptor-mediated apoptosis of NEMO-deficient hepatocytes drives the development of hepatitis and HCC in NEMOLPC-KO mice. The three main death receptors of the TNF receptor superfamily that are capable of inducing caspase-8-mediated apoptosis are TNFR1, Fas/CD95 and TRAIL-R/DR5.16 To address the role of death receptor-induced apoptosis in triggering the spontaneous death of NEMO-deficient hepatocytes and the development of steatohepatitis and HCC, we generated and analysed NEMOLPC-KO mice lacking TNFR1, Fas or TRAIL-R specifically in LPCs. Surprisingly, we found that LPC-specific knockout of each of the death receptors alone but also combined deficiency of TNFR1, Fas and TRAIL-R in LPCs did not prevent spontaneous hepatocyte apoptosis, hepatitis and HCC development in NEMOLPC-KO mice. In addition, knockout of TNF in all cells also did not protect NEMOLPC-KO mice from hepatocyte death, hepatitis and HCC. Collectively, these results demonstrate that TNFR1, Fas and TRAIL-R are not required for the development of chronic liver damage and HCC in NEMOLPC-KO mice.  相似文献   

6.
7.
Besides inducing apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates NF-κB. The apoptosis signaling pathway of TRAIL is well characterized involving TRAIL receptors, Fas-associated protein with death domain (FADD) and caspase-8. In contrast, the molecular mechanism of TRAIL signaling to NF-κB remains controversial. Here, we characterized the receptor–proximal mediators of NF-κB activation by TRAIL. Deletion of the DD of TRAIL receptors 1 and 2 revealed that it is essential in NF-κB signaling. Because FADD interacts with the TRAIL receptor DD, FADD was tested. RNAi-mediated knockdown of FADD or FADD deficiency in JURKAT T-cell leukemia cells decreased or disabled NF-κB signaling by TRAIL. In contrast, TRAIL-induced activation of NF-κB was maintained upon loss of receptor interacting protein 1 (RIP1) or knockdown of FLICE-like inhibitory protein (FLIP). Exogenous expression of FADD rescued TRAIL-induced NF-κB signaling. Loss-of-function mutations of FADD within the RHDLL motif of the death effector domain, which is required for TRAIL-induced apoptosis, abrogated FADD''s ability to recruit caspase-8 and mediate NF-κB activation. Accordingly, deficiency of caspase-8 inhibited TRAIL-induced activation of NF-κB, which was rescued by wild-type caspase-8, but not by a catalytically inactive caspase-8 mutant. These data establish the mechanism of TRAIL-induced NF-κB activation involving the TRAIL receptor DD, FADD and caspase-8, but not RIP1 or FLIP. Our results show that signaling of TRAIL-induced apoptosis and NF-κB bifurcates downstream of caspase-8.  相似文献   

8.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

9.
10.
Death receptor-mediated hepatocyte apoptosis is implicated in a wide range of liver diseases including viral and alcoholic hepatitis, ischemia/reperfusion injury, fulminant hepatic failure, cholestatic liver injury, as well as cancer. Deletion of NF-κB essential modulator in hepatocytes (IKKγ/Nemo) causes spontaneous progression of TNF-mediated chronic hepatitis to hepatocellular carcinoma (HCC). Thus, we analyzed the role of death receptors including TNFR1 and TRAIL in the regulation of cell death and the progression of liver injury in IKKγ/Nemo-deleted livers. We crossed hepatocyte-specific IKKγ/Nemo knockout mice (NemoΔhepa) with constitutive TNFR1−/− and TRAIL−/− mice. Deletion of TNFR1, but not TRAIL, decreased apoptotic cell death, compensatory proliferation, liver fibrogenesis, infiltration of immune cells as well as pro-inflammatory cytokines, and indicators of tumor growth during the progression of chronic liver injury. These events were associated with diminished JNK activation. In contrast, deletion of TNFR1 in bone-marrow-derived cells promoted chronic liver injury. Our data demonstrate that TNF- and not TRAIL signaling determines the progression of IKKγ/Nemo-dependent chronic hepatitis. Additionally, we show that TNFR1 in hepatocytes and immune cells have different roles in chronic liver injury–a finding that has direct implications for treating chronic liver disease.  相似文献   

11.
The death receptor, Fas, triggers apoptotic death and is essential for maintaining homeostasis in the peripheral lymphoid organs. RIP1 was originally cloned when searching for Fas-binding proteins and was later shown to associate also with the signaling complex of TNFR1. Although Fas exclusively induces apoptosis, TNFR1 primarily activates the pro-survival/pro-inflammatory NF-κB pathway. Mutations in Fas lead to lymphoproliferative (lpr) diseases, and deletion of TNFR1 results in defective innate immune responses. However, the function of RIP1 in the adult lymphoid system has not been well understood, primarily owing to perinatal lethality in mice lacking the entire RIP1 protein in germ cells. This current study investigated the requirement for RIP1 in the T lineage using viable RIP1 mutant mice containing a conditional and kinase-dead RIP1 allele. Disabling the kinase activity of RIP1 had no obvious impact on the T-cell compartment. However, T-cell-specific deletion of RIP1 led to a severe T-lymphopenic condition, owing to a dramatically reduced mature T-cell pool in the periphery. Interestingly, the immature T-cell compartment in the thymus appeared intact. Further analysis showed that mature RIP1−/− T cells were severely defective in antigen receptor-induced proliferative responses. Moreover, the RIP1−/− T cells displayed greatly increased death and contained elevated caspase activities, an indication of apoptosis. In total, these results revealed a novel, kinase-independent function of RIP1, which is essential for not only promoting TCR-induced proliferative responses but also in blocking apoptosis in mature T cells.The pro-survival signaling pathways provide protection against cell death responses at various stages during T lymphopoiesis as well as maintenance of the mature population.1, 2 Apoptosis is a major programmed cell death pathway, which can be induced through either intrinsic or extrinsic signals.3 Under normal circumstances, the pro-survival and apoptosis signaling pathways are tightly regulated, which ensures generation of diverse T-cell repertoires, while avoiding autoimmunity. For instance, the Bcl-2 and Bcl-XL genes, which inhibit the intrinsic apoptotic pathway, are essential for both T-cell development and peripheral maintenance.4, 5 However, lack of cell death, as in the case of inactivation of Bim, a pro-apoptotic protein of the Bcl-2 family, results in lymphoproliferative and autoimmune diseases.6 The extrinsic pathway of apoptosis is triggered through cell receptors, including Fas/Apo-1 and tumor necrosis factor receptor 1 (TNFR1). Whereas Fas is a professional death receptor, TNFR1 primarily signals the pro-survival pathway by activating NF-κB, which also promotes inflammation.7, 8Receptor-interacting protein (RIP or RIP1) was originally cloned as a potential Fas-interacting protein.9 However, later studies found that lack of RIP1 has no effect on Fas-induced apoptosis.10, 11 Subsequently, RIP1 was also found to associate with the signaling complex of TNFR1.12 It was shown that RIP1 deficiency disrupts NF-κB activation induced by TNFR1 in primary mouse embryonic fibroblast cells or human Jurkat T lymphoma cells.10, 11 Several functional domains of RIP1 have been defined. In particular, RIP1 contains a serine/threonine kinase domain (KD) at the amino-terminus and a death domain (DD) at the carboxy-terminus. The intermediate domain, but not the protein serine/threonine KD of RIP1, is required for the activation of NF-κB.13 The DD of RIP1 interacts with the DD of TNFR1-associated death domain (TRADD) protein, a signaling adaptor, leading to both apoptosis and NF-κB activation.12 Therefore, RIP1 may serve as a scaffold protein in addition to being a protein serine/threonine kinase.The function of the KD of RIP1 remained unknown until the landmark work by Holler et al.,14 implicating a novel function for RIP1 in a caspase-independent cell death process with certain characteristics of necrosis, namely necroptosis. Importantly, mutations targeting the kinase activity of RIP1 abolish necroptotic cell death induced by TNFR1. The in vivo role of RIP1-mediated necroptosis was first revealed by analysis of the embryonic defect displayed by mice lacking the Fas-associated death domain (FADD) protein.15 The FADD adaptor protein relays exclusively apoptotic signals in the pathways triggered by Fas, TNFR1, and TNF-related apoptosis-inducing ligand receptors (TRAIL-Rs or DR4/5).16, 17, 18 Whereas none of the DRs are essential for mouse development, FADD deficiency resulted in midgestation death of mouse embryos.19, 20 Interestingly, when RIP1 is absent, normal embryonic development is restored in FADD−/− mice,15 indicating that FADD−/− embryonic lethality is caused by RIP1-dependent necroptosis.Although normal during embryogenesis, RIP1−/− FADD−/− double knockout (DKO) mice display perinatal lethality,15 similar to the phenotype of RIP1−/− single knockout mice.10 In contrast, deletion of a RIP1-related protein kinase, RIP3, fully restores normal embryonic as well as postnatal development in FADD−/− mice.21 Recent studies demonstrated that RIP1−/− mice can only reach adulthood when both FADD and RIP3 are absent, indicating that RIP1 protects neonatal cells from FADD-mediated apoptosis and RIP3-dependent necroptosis.22, 23, 24, 25 Importantly, FADD−/− RIP3−/− DKO mice and RIP1−/− FADD−/− RIP3−/− triple knockout mice develop age-dependent lymphadenopathy and splenomegaly, reminiscent of the lymphoproliferative (lpr) disease displayed by Fas−/− mice. Therefore, both apoptosis and necroptosis are essential for homeostasis in the peripheral lymphoid organs.Previous studies have indicated that RIP1 is essential for T-cell development, because RIP1-deficient fetal liver cells fail to reconstitute the T-cell compartment in immunodeficient recipient mice.15, 26 A recent study showed that lack of RIP1 in hematopoietic stem cells and progenitors (HSCs/Ps) leads to a severe defect in hematopoiesis.27 However, the temporal requirement for RIP1, particularly at postlineage commitment stages, remains unclear. In the current study, T lineage-specific deletion of RIP1 revealed a novel stage-specific requirement for RIP1 to protect T cells from apoptosis as well as to allow normal proliferative responses.  相似文献   

12.
TNF receptor 1 signaling induces NF-κB activation and necroptosis in L929 cells. We previously reported that cellular inhibitor of apoptosis protein-mediated receptor-interacting protein 1 (RIP1) ubiquitination acts as a cytoprotective mechanism, whereas knockdown of cylindromatosis, a RIP1-deubiquitinating enzyme, protects against tumor necrosis factor (TNF)-induced necroptosis. We report here that RIP1 is a crucial mediator of canonical NF-κB activation in L929 cells, therefore questioning the relative cytoprotective contribution of RIP1 ubiquitination versus canonical NF-κB activation. We found that attenuated NF-κB activation has no impact on TNF-induced necroptosis. However, we identified A20 and linear ubiquitin chain assembly complex as negative regulators of necroptosis. Unexpectedly, and in contrast to RIP3, we also found that knockdown of RIP1 did not block TNF cytotoxicity. Cell death typing revealed that RIP1-depleted cells switch from necroptotic to apoptotic death, indicating that RIP1 can also suppress apoptosis in L929 cells. Inversely, we observed that Fas-associated protein via a death domain, cellular FLICE inhibitory protein and caspase-8, which are all involved in the initiation of apoptosis, counteract necroptosis induction. Finally, we also report RIP1-independent but RIP3-mediated necroptosis in the context of TNF signaling in particular conditions.  相似文献   

13.
The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFκB-mediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFκB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival.  相似文献   

14.
Diffusely infiltrating gliomas are among the most prognostically discouraging neoplasia in human. Temozolomide (TMZ) in combination with radiotherapy is currently used for the treatment of glioblastoma (GBM) patients, but less than half of the patients respond to therapy and chemoresistance develops rapidly. Epigenetic silencing of the O6-methylguanine-DNA methyltransferase (MGMT) has been associated with longer survival in GBM patients treated with TMZ, but nuclear factor κB (NF-κB)-mediated survival signaling and TP53 mutations contribute significantly to TMZ resistance. Enhanced NF-κB is in part owing to downregulation of negative regulators of NF-κB activity, including Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and NF-κB inhibitor interacting RAS-like 2 (NKIRAS2). Here we provide a novel mechanism independent of TP53 and MGMT by which oncogenic miR-125b confers TMZ resistance by targeting TNFAIP3 and NKIRAS2. GBM cells overexpressing miR-125b showed increased NF-κB activity and upregulation of anti-apoptotic and cell cycle genes. This was significantly associated with resistance of GBM cells to TNFα- and TNF-related inducing ligand-induced apoptosis as well as resistance to TMZ. Conversely, overexpression of anti-miR-125b resulted in cell cycle arrest, increased apoptosis and increased sensitivity to TMZ, indicating that endogenous miR-125b is sufficient to control these processes. GBM cells overexpressing TNFAIP3 and NKIRAS2 were refractory to miR-125b-induced apoptosis resistance as well as TMZ resistance, indicating that both genes are relevant targets of miR-125b. In GBM tissues, high miR-125b expression was significantly correlated with nuclear NF-κB confirming that miR-125b is implicated in NF-κB signaling. Most remarkably, miR-125b overexpression was clearly associated with shorter overall survival of patients treated with TMZ, suggesting that this microRNA is an important predictor of response to therapy.  相似文献   

15.
CD40, a tumor necrosis factor (TNF) receptor (TNFR) family member, conveys signals regulating diverse cellular responses, ranging from proliferation and differentiation to growth suppression and cell death. The ability of CD40 to mediate apoptosis in carcinoma cells is intriguing given the fact that the CD40 cytoplasmic C terminus lacks a death domain homology with the cytotoxic members of the TNFR superfamily, such as Fas, TNFR1, and TNF-related apoptosis-inducing ligand (TRAIL) receptors. In this study, we have probed the mechanism by which CD40 transduces death signals. Using a trimeric recombinant soluble CD40 ligand to activate CD40, we have found that this phenomenon critically depends on the membrane proximal domain (amino acids 216 to 239) but not the TNFR-associated factor-interacting PXQXT motif in the CD40 cytoplasmic tail. CD40-mediated cytotoxicity is blocked by caspase inhibitors, such as zVAD-fmk and crmA, and involves activation of caspase 8 and caspase 3. Interestingly, CD40 ligation was found to induce functional Fas ligand, TRAIL (Apo-2L) and TNF in apoptosis-susceptible carcinoma cells and to up-regulate expression of Fas. These findings identify a novel proapoptotic mechanism which is induced by CD40 in carcinoma cells and depends on the endogenous production of cytotoxic cytokines and autocrine or paracrine induction of cell death.  相似文献   

16.
17.
18.
Neuroinflammation is a common feature of acute neurological conditions such as stroke and spinal cord injury, as well as neurodegenerative conditions such as Parkinson''s disease, Alzheimer''s disease, and amyotrophic lateral sclerosis. Previous studies have demonstrated that acute neuroinflammation can adversely affect the survival of neural precursor cells (NPCs) and thereby limit the capacity for regeneration and repair. However, the mechanisms by which neuroinflammatory processes induce NPC death remain unclear. Microglia are key mediators of neuroinflammation and when activated to induce a pro-inflammatory state produce a number of factors that could affect NPC survival. Importantly, in the present study we demonstrate that tumor necrosis factor α (TNFα) produced by lipopolysaccharide-activated microglia is necessary and sufficient to trigger apoptosis in mouse NPCs in vitro. Furthermore, we demonstrate that microglia-derived TNFα induces NPC apoptosis via a mitochondrial pathway regulated by the Bcl-2 family protein Bax. BH3-only proteins are known to play a key role in regulating Bax activation and we demonstrate that microglia-derived TNFα induces the expression of the BH3-only family member Puma in NPCs via an NF-κB-dependent mechanism. Specifically, we show that NF-κB is activated in NPCs treated with conditioned media from activated microglia and that Puma induction and NPC apoptosis is blocked by the NF-κB inhibitor BAY-117082. Importantly, we have determined that NPC apoptosis induced by activated microglia-derived TNFα is attenuated in Puma-deficient NPCs, indicating that Puma induction is required for NPC death. Consistent with this, we demonstrate that Puma-deficient NPCs exhibit an ∼13-fold increase in survival as compared with wild-type NPCs following transplantation into the inflammatory environment of the injured spinal cord in vivo. In summary, we have identified a key signaling pathway that regulates neuroinflammation induced apoptosis in NPCs in vitro and in vivo that could be targeted to promote regeneration and repair in diverse neurological conditions.  相似文献   

19.
20.
We describe a 17 year old patient suffering from Canale-Smith syndrome (CSS) including chronic lymphadenopathy, splenomegaly, hypergammaglobulinemia and recurrent Coombs positive hemolytic crises. The parents are not consanguine, all other family members including two brothers are healthy. Peripheral blood mononuclear cells of the patient showed an increased rate of CD3 positive, CD4/CD8 double negative T-lymphocytes. In vitro assays showed these cells to have an increased rate of spontaneous apoptosis. Though expression of Fas/Apo-1 (CD95) and Fas-ligand (FasL) was detected on RNA- and protein level we found Fas/Apo-1 mediated apoptosis being significantly reduced. Sequencing of the fas/apo-1 gene proved the patient RT and his father to carry a point mutation at position 804 located in exon 9 (death domain) leading to an amino acid substitution. For developing of CSS, a fas/apo-1 mutation seems to be necessary but not sufficient. An additional independent mechanism must be involved in the pathogenesis of human lpr<-phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号