首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation was conducted to establish the effects of harmattan and hot-dry season on estrous cycle length, onset, and duration of estrus in Yankasa sheep indigenous to the Nigerian guinea savanna zone. Mean cycle lengths were 16.8 +/- 0.58 and 16.4 +/- 0.53 days during harmattan and hot-dry seasons, respectively; short cycles, 5-13 days, and long cycles, 21 to 30 days, were observed during both seasons. During the harmattan season, 57.1% of estrus began at night while 70% started at night during the hot-dry season. The duration of normal estrus observed during the harmattan, 33.6 +/- 5.87h, significantly decreased (P0.05) during the hot-dry season (24.0 +/- 5.45h). It is suggested that twice daily observation at 12-hour intervals will suffice to detect estrus in this breed of sheep.  相似文献   

2.
3.
Plasma concentrations of oxytocin and progesterone have been measured by radioimmunoassay in jugular venous blood obtained daily from 5 sheep during 2 estrous cycles and in early pregnancy.Concentrations of oxytocin were relatively high (15–30 pg/ml) during the luteal phase of the cycle, but fell at estrus (to 1–17 pg/ml). A fall in oxytocin was also observed on day 15 of pregnancy, when, as expected, progesterone levels remained high. It is suggested that raised basal levels of oxytocin are unlikely to cause the increasing uterine release of prostaglandin F which occurs at the end of the estrous cycle.  相似文献   

4.
The effects of repeated laparoscopic surgery on the length of the bovine estrous cycle, estrus, ovulation and corpus luteum function were determined after one estrous cycle of normal duration (18 to 24 days). Five, Angus x Hereford cows were subjected to laparoscopy on days 5, 13, 18 and 20 (estrus = day 0) of the subsequent cycle. Blood was collected daily during the cycle in which laparoscopy was performed (surgical cycle) and during the next cycle (postsurgical cycle). Lengths of the surgical and postsurgical cycles (22.3 +/- .5 days and 21.5 +/- .6 days, respectively) did not differ (P>.05) from that of the presurgical cycle (21.8 +/- .2 days). Average concentrations (ng/ml) of LH and progesterone in serum were similar during the surgical and postsurgical cycles (1.2 +/- .1, 2.2 +/- .2 vs 1.3 +/- .2 and 2.3 +/- .1). Progesterone concentrations remained above 1 ng/ml for 17 and 16 days during the surgical and postsurgical cycles, respectively. A pre-ovulatory rise in LH, along with estrus and ovulation was confirmed in all animals. Follicular development, characterized by follicular volume, increased progressively from days 5 to 20, with the largest increase occurring between days 13 and 18. These results indicate that laparoscopy, used at the times and frequency specified, does not alter reproductive function of cyclic cows and can provide information on ovarian activity.  相似文献   

5.
6.
Scatchard analysis was used to determine the distribution, number, and affinity of unoccupied receptors for ovine trophoblast protein-1 (oTP-1) in endometrium of sheep throughout the estrous cycle and early pregnancy. In Experiment I, oTP-1 receptor characteristics were determined in membrane preparations of caruncular and intercaruncular regions of endometrium collected from uterine horns ipsilateral and contralateral to the ovary bearing the corpus luteum. Receptor concentrations and affinity constants for oTP-1 were not different (p greater than 0.1) between the four endometrial regions examined, suggesting that the expression of receptors for oTP-1 occurs uniformly throughout the endometrium. Endometrial receptor characteristics for oTP-1, luteal wet weights, and progesterone contents were determined throughout the estrous cycle and early pregnancy in Experiment II. Concentration of receptors and affinity constants for oTP-1 varied throughout the estrous cycle and early pregnancy (p less than 0.01), with the pattern of change differing between cyclic and pregnant ewes (p less than 0.01). Numbers of receptors for oTP-1 were maximal on Day 4 of the estrous cycle and declined progressively to Day 12 (p less than 0.05) in both cyclic and pregnant ewes. After Day 12, the quantity of unoccupied receptors for oTP-1 increased (p less than 0.05) gradually to Day 16 in cyclic ewes, but declined (p less than 0.05) further in the endometrium of pregnant ewes. The affinity constants of endometrial receptors for oTP-1 were similar in cyclic and pregnant ewes prior to Day 12, increasing threefold from Days 4 to 12 (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Uterine tone, uterine contractility and endometrial echotexture were monitored daily in heifers during the estrous cycle (n = 6; Days 0 to 21; ovulation = Day 0) and during early pregnancy (n = 7; Days 0 to 26). Uterine tone was assessed by transrectal palpation and scored from 1 (flaccid) to 5 (turgid) by an operator who had no knowledge of reproductive status, day, or group. The main effect of day was significant, but the group effect and the group-by-day interaction were not. Uterine tone scores were high during the periovulatory period (Days--1, 0, 1), decreased (P < 0.05) to low levels on Days 3 and 4, and then increased (P < 0.05) from Days 4 to 10. The increase in tone during early diestrus was confirmed (P < 0.05) in a second experiment. Uterine contractility was assessed by transrectal ultrasonography during a five-minute scan of the caudal portions of the uterine horns and scored from 1 (minimal contractility) to 4 (maximal contractility). The main effects of day and the group-by-day interaction were significant. Contractility scores in both groups were highest just before or on the day of ovulation (Days--1,0) and then decreased (P < 0.05) until Day 11. After Day 16, the scores increased (P < 0.05) in the nonbred heifers and remained low in the pregnant heifers. Endometrial echotexture scores were different among days (P < 0.0001), between the 2 groups (P < 0.02), and for the group-by-day interaction (P < 0.0001). Echotexture scores in both groups peaked just before ovulation (Day--1) and then decreased (P < 0.05) until Day 4. After Day 16, the scores increased in the nonbred group but remained low in pregnant heifers. In summary, uterine contractility and endometrial scores had similar profiles, being high during the periovulatory period and low thereafter; the levels rose in association with the end of the interovulatory interval in nonbred heifers, but remained at low levels in pregnant heifers. Uterine tone scores were also high during the periovulatory period and decreased to low levels several days postovulation, but then, in contrast with the other end points, began to increase in both the nonbred and pregnant heifers.  相似文献   

8.
Fields MJ  Fields PA 《Theriogenology》1996,45(7):1295-1325
The corpus luteum, one of the biological clocks of the estrous cycle and pregnancy, is known foremost for its production of progesterone that blocks the pituitary release of gonadotropins and prepares the uterus for a pregnancy. The cellular sources of this progesterone are the steroidogenic small and large luteal cells. Other luteal cells that are not steroidogenic, but are believed to have an important role in the function of this gland are the fibroblast, macrophages and endothelial cells. The most prominent luteal cell is the large steroidogenic cell characterized by an abundance of smooth endoplasmic reticulum and densely packed spherical mitochondria that are indicative of its contribution to most of the circulating progesterone believed to be constitutively secreted and not under the control of LH. Other distinguishing features of the large luteal cell are the presence of rough endoplasmic reticulum, prominent Golgi, and secretory granules that are indicative of endocrine cells. This cell undergoes dynamic changes across the estrous cycle and pregnancy, believed to reflect a change in progesterone and protein secretion that will eventually influence a successful pregnancy or another ovulation if pregnancy fails. The morphological characteristics of the bovine luteal cells are the focus of this review.  相似文献   

9.
10.
The use of hCG in cattle at breeding or at different times after breeding has been associated with extension in estrous cycle length among cows that do not become pregnant. The objective of this study was to determine whether the increase in estrous cycle length observed in hCG-treated cows that fail to become pregnant is due to changes in ovarian follicular dynamics. Twelve nonbred lactating cows were randomly assigned either to receive hCG on Day 7 of the cycle (Day 0 = day of estrus, n = 6) or to serve as controls (n = 6). Ultrasound scanning was conducted daily from Day 0 until the onset of the next ovulation to monitor follicular and corpus luteum (CL) dynamics. Blood samples were collected for progesterone analysis at each ultrasound session. Ovulation of the Day 7 follicle occurred in all 6 hCG-treated cows. The time of emergence of the second-wave of follicular growth was advanced in hCG-treated cows but was not statistically different (P > 0.05) from that of the control cows (10.8 +/- 0.3 vs 12.7 +/- 1.4 d). The mean diameter of the second-wave dominant follicle from Days 15 to 18 was not different (P > 0.05) between the treatment groups. However, the second-wave dominant follicle had a slower growth rate (0.8 vs 1.3 mm/d) among cows treated with hCG compared with that of the controls. The second-wave dominant follicle was the ovulatory follicle in 5 control cows, but only in 3 hCG-treated cows. The dominant follicle from the third wave ovulated in 1 control and in 3 hCG-treated cows. The lifespan of the spontaneous CL and the time to low progesterone levels (< 1 ng/ml) were not different between the control and hCG-treated cows. These results suggest an altered follicular dynamic but no extension in estrous cycle length when hCG is administered on Day 7 of the cycle in postpartum cows.  相似文献   

11.
12.
Lipolytic activity measured at pH 8.6 in bovine corpora lutea exhibited classical properties of lipoprotein lipase (LPL) in terms of serum and heparin stimulation and NaCl inhibition. LPL activity was measured in 23 corpora lutea collected at different stages of the estrous cycle and early pregnancy. The LPL activity in cyclic corpora lutea (mumole FA released/hr/100 mg acetone powder) was low at Days 4-8 of the estrous cycle (3.1 +/- 1.5: mean +/- SE) and at Days 19-20 (1.6 +/- 0.6). However, high activity of the enzyme was found at Days 12-15 of the cycle (11.8 +/- 1.8); these concentrations were significantly (P less than 0.01) elevated over those found at Days 4-8 and 19-20. The enzyme activity began to decline at Days 16-18 of the estrous cycle (5.1 +/- 1.7). Low enzyme activity was found in the corpora lutea removed from two cows at Day 22 of pregnancy. Progesterone concentrations were measured in 16 of the 23 corpora lutea and a good correlation (r = 0.75, P less than 0.01) was found between lipoprotein lipase and progesterone concentrations of the tissue. The data suggest that LPL may be involved in controlling the transfer of fatty acids, including arachidonic, from plasma lipoproteins to luteal tissue.  相似文献   

13.
Alam MG  Ahmed JU  Jahan S 《Theriogenology》1989,31(4):935-941
In an experiment to examine the relationships between adrenals and reproductive cycle, 10 mg dexamethasone (a synthetic glucocorticoid) were injected intramuscularly twice daily for 10 d to four Black Bengal goats, beginning on Day 11 of the synchronized estrous cycle. The extended length of the sexual cycle was monitored by the clinical signs of anestrus. Laparotomy was performed to examine the status of the ovary of an 8, 9, 10 and 8 d extended cycle, respectively. The length of the next cycle was normal. Endogenous cortisol values were suppressed for 11, 13, 20 and 24 d, respectively. It is thought that dexamethasone caused prolonged luteal function either by the suppression of prostaglandin F(2)alpha synthesis or by the suppression of pituitary stimulation of follicular growth.  相似文献   

14.
15.
The pattern of ovarian follicle development in maiden cyclic lambs was characterized using the definition of a follicle wave as the changes in the number of follicles among the days of the estrous cycle, as originally defined in cattle by Rajakoski in 1960. We also examined the steroid content relationships among follicles on Days 5 (Wave 1) and 14 (Waves 2 and 3) of the estrous cycle. In Experiment 1, the ovaries of 20 cyclic lambs (40 to 45 kg) were examined daily using transrectal ultrasonography for 1 or 2 estrous cycles (n = 31 cycles). The number of small (2 and 3 mm in diameter), medium (4 and 5 mm) and large (> or = 6 mm) follicles were aligned with the beginning and end of the average length estrous cycle and then compared among days. Identified follicles were defined as those that grew to > or = 4 mm and remained at > or = 3 mm for > or = 3 d. The number of identified follicles emerging (retrospectively identified at 2 or 3 mm) per ewe per day was also aligned with the average length estrous cycle. In Experiment 2, ewe lambs were ovariectomized on Day 5 (n = 6) or 14 (n = 5) of the estrous cycle, then follicle diameters and follicular fluid concentrations of estradiol and progesterone were compared among follicles. Data were analyzed by repeated measures ANOVA and compared among days using Fisher's LSD. In Experiment 1, either 2 (n = 10 cycles), 3 (n = 20 cycles) or 4 (n = 1 cycle) periods of emergence of identified follicles occurred during individual cycles, with estrous cycle lengths of 15.6 +/- 1.6, 16.1 +/- 1.1 and 17 d respectively. In animals with 2 or 3 periods of emergence of identified follicles, the total number of small, medium and large follicles differed (P < 0.05) among days of the estrous cycle showing a wave-like pattern. In Experiment 2, a single follicle collected on each of Days 5 and 14 of the cycle (6.2 +/- 0.2 and 3.9 +/- 0.2 mm in diameter) had a higher (P < 0.05) concentration of follicular fluid estradiol (36.2 +/- 4.4 and 50.9 +/- 21.6 ng/mL) than other follicles collected on the same day (next largest follicle: 4.3 +/- 0.3 and 3.5 +/- 0.4 mm; 4.3 +/- 0.9 and 18.2 +/- 6.7 ng/mL estradiol). The results showed that 1) there was a synchronous emergence of follicles associated with fluctuations in the number and size of follicles during the estrous cycle; 2) within a wave there was a hierarchy among follicles for diameter and steroid content; 3) ovarian follicle growth in ewe lambs occurred in 2 or 3 organized waves during the estrous cycle.  相似文献   

16.
Estrogen metabolism and excretion during the bovine estrous cycle   总被引:2,自引:0,他引:2  
T N Mellin  R E Erb 《Steroids》1966,7(6):589-606
  相似文献   

17.
Endometrial biopsy specimens were obtained from 46 normally cyclic heifers at known stages of their estrous period to show precise characteristic changes. These tissues were embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The following histological changes were observed during the estrous cycle. Metrorrhagia was observed on Days 0 to 1 (estrus = Day 0). Mitoses in glandular epithelium occurred on Day 5. Basal vacuolation in the surface epithelium occurred on Days 5 to 6. Leukocyte invaded the functional layer on Day 7. Stromal mitoses were observed on Days 9 to 12. The results indicate that clincians need to be aware that histological evaluation is important for the diagnosis of endometrial function and that biopsy is useful for this purpose.  相似文献   

18.
Several reports suggest the participation of progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling in the reproductive system. This study aimed at investigating the presence and localization of PGRMC1 in bovine ovary, oviduct and uterus, during the follicular and luteal phases of the estrous cycle. In the ovary, PGRMC1 has been detected in surface germinal epithelium, granulosa cells, theca cells and in the germinal vesicle of the oocytes at all stages of folliculogenesis. In the corpus luteum the expression of PGRMC1 was influenced by the stage of the estrous cycle. In the oviducts and in the uterus horns, PGRMC1 was immunolocalized in the luminal epithelium, in the muscle layer cells and in the endothelial cells. In the uterus, PGRMC1 was intensely localized also in the glandular endometrium. However, in the oviducts and in the uterus horns, the localization of PGRMC1 was independent on the stage of the estrous cycle and on whether evaluating the ipsilateral or the contralateral organ. In conclusion, the present immunohistochemical study showed that PGRMC1 is located in various compartments of the bovine female reproductive organs. With the exception of the corpora lutea, PGRMC1 localization showed similar pattern during different stages of the estrous cycle.  相似文献   

19.
20.
A recently developed mechanistic mathematical model of the bovine estrous cycle was parameterized to fit empirical data sets collected during one estrous cycle of 31 individual cows, with the main objective to further validate the model. The a priori criteria for validation were (1) the resulting model can simulate the measured data correctly (i.e. goodness of fit), and (2) this is achieved without needing extreme, probably non-physiological parameter values. We used a least squares optimization procedure to identify parameter configurations for the mathematical model to fit the empirical in vivo measurements of follicle and corpus luteum sizes, and the plasma concentrations of progesterone, estradiol, FSH and LH for each cow. The model was capable of accommodating normal variation in estrous cycle characteristics of individual cows. With the parameter sets estimated for the individual cows, the model behavior changed for 21 cows, with improved fit of the simulated output curves for 18 of these 21 cows. Moreover, the number of follicular waves was predicted correctly for 18 of the 25 two-wave and three-wave cows, without extreme parameter value changes. Estimation of specific parameters confirmed results of previous model simulations indicating that parameters involved in luteolytic signaling are very important for regulation of general estrous cycle characteristics, and are likely responsible for differences in estrous cycle characteristics between cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号