首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The circadian clock of Neurospora broadly regulates gene expression and is synchronized with the environment through molecular responses to changes in ambient light and temperature. It is generally understood that light entrainment of the clock depends on a functional circadian oscillator comprising the products of the wc-1 and wc-2 genes as well as those of the frq gene (the FRQ/WCC oscillator). However, various models have been advanced to explain temperature regulation. In nature, light and temperature cues reinforce one another such that transitions from dark to light and/or cold to warm set the clock to subjective morning. In some models, the FRQ/WCC circadian oscillator is seen as essential for temperature-entrained clock-controlled output; alternatively, this oscillator is seen exclusively as part of the light pathway mediating entrainment of a cryptic "driving oscillator" that mediates all temperature-entrained rhythmicity, in addition to providing the impetus for circadian oscillations in general. To identify novel clock-controlled genes and to examine these models, we have analyzed gene expression on a broad scale using cDNA microarrays. Between 2.7 and 5.9% of genes were rhythmically expressed with peak expression in the subjective morning. A total of 1.4-1.8% of genes responded consistently to temperature entrainment; all are clock controlled and all required the frq gene for this clock-regulated expression even under temperature-entrainment conditions. These data are consistent with a role for frq in the control of temperature-regulated gene expression in N. crassa and suggest that the circadian feedback loop may also serve as a sensor for small changes in ambient temperature.  相似文献   

13.
14.
15.
16.
The Neurospora protein kinase C (NPKC) is a regulator of light responsive genes. We have studied the function of NPKC in light response by investigating its biochemical and functional interaction with the blue light photoreceptor white-collar 1 (WC-1), showing that activation of NPKC leads to a significant decrease in WC-1 protein levels. Furthermore, we show that WC-1 and NPKC interact in a light-regulated manner in vivo, and that protein kinase C (PKC) phosphorylates WC-1 in vitro. We designed dominant negative and constitutively active forms of PKC which are able to induce either a large increase of WC-1 protein level or a strong reduction respectively. Moreover, these changes in PKC activity result in an altered light response. As WC-1 is a key component of Neurospora circadian clock and regulates the clock oscillator component FRQ we investigated the effect of NPKC-mutated forms on FRQ levels. We show that changes in PKC activity affect FRQ levels and the robustness of the circadian clock. Together these data identify NPKC as a novel component of the Neurospora light signal transduction pathway that modulates the circadian clock.  相似文献   

17.
To understand the role of white collar-2 in the Neurospora circadian clock, we examined alleles of wc-2 thought to encode partially functional proteins. We found that wc-2 allele ER24 contained a conservative mutation in the zinc finger. This mutation results in reduced levels of circadian rhythm-critical clock gene products, frq mRNA and FRQ protein, and in a lengthened period of the circadian clock. In addition, this mutation altered a second canonical property of the clock, temperature compensation: as temperature increased, period length decreased substantially. This temperature compensation defect correlated with a temperature-dependent increase in overall FRQ protein levels, with the relative increase being greater in wc-2 (ER24) than in wild type, while overall frq mRNA levels were largely unaltered by temperature. We suggest that this temperature-dependent increase in FRQ levels partially rescues the lowered levels of FRQ resulting from the wc-2 (ER24) defect, yielding a shorter period at higher temperatures. Thus, normal activity of the essential clock component WC-2, a positive regulator of frq, is critical for establishing period length and temperature compensation in this circadian system.  相似文献   

18.
A new clock mutant ( rhy-2) was isolated by DNA insertion mutagenesis using a plasmid that contains a region located upstream of the cmd gene in the genome of Neurospora crassa. This mutant is arrhythmic with regard to conidiation in continuous darkness but rhythmic under a light-dark cycle. After plasmid rescue from genomic DNA of the rhy-2 strain, the insertion was localized to the gene white collar-1 ( wc-1). Plasmid DNA was inserted 3' to the sequence encoding the polyglutamine region of the WC-1 gene product, and an mRNA encoding a truncated WC-1 protein must be synthesized under the control of the cmd promoter. The new wc-1 mutant, rhy-2, is still sensitive to light, although only weakly. Since the circadian rhythm of conidiation in continuous darkness is eliminated in the mutant, the polyglutamine region in WC-1 may be essential for both clock function and light-induced carotenogenesis in Neurospora.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号