首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose is transported across the cell membrane of Neurospora crassa by two physiologically and kinetically distinct transport systems. System II is repressed by growth of the cells in 0.1 m glucose. System I is synthesized constitutively. The apparent K(m) for glucose uptake by system I and system II are 25 and 0.04 mm, respectively. Both uptake systems are temperature dependent, and are inhibited by NaN(3) and 2,4-dinitrophenol. Glucose uptake by system II was not inhibited by fructose, galactose, or lactose. However, glucose was shown to be a noncompetitive inhibitor of fructose and galactose uptake. The transport rate of [(14)C]3-0-methyl-d-glucose (3-0-MG) was higher in cells preloaded with unlabeled 3-0-MG than in control cells. The rate of entry of labeled 3-0-MG was only slightly inhibited by the presence of NaN(3) in the medium. Further, NaN(3) caused a rapid efflux of accumulated [(14)C]3-0-MG. These data imply that the energetic step in the transport process prevents efflux.  相似文献   

2.
Two galactose uptake systems were found in the mycelia of Neurospora crassa. In glucose-grown mycelia, galactose was transported by a low-affinity (Km = 400 mM) constitutive system which was distinct from the previously described glucose transport system I (R. P. Schneider and W. R. Wiley, J. Bacteriol. 106:479--486, 1971). In carbon-starved mycelia or mycelia incubated with galactose, a second galactose transport activity appeared which required energy, had a high affinity for galactose (Km = 0.7 mM), and was shown to be the same as glucose transport system II. System II also transported mannose, 2-deoxyglucose, xylose, and talose and is therefore a general monosaccharide transport system. System II was derepressed by carbon starvation, completely repressed by glucose, mannose, and 2-deoxyglucose, and partially repressed by fructose and xylose. Incubation with galactose yielded twice as much activity as starvation. This extra induction by galactose required protein synthesis, and represented an increase in activity of system II rather than the induction of another transport system. Glucose, mannose, and 2-deoxyglucose caused rapid degradation of preexisting system II; fructose and xylose caused a slower degradation of activity.  相似文献   

3.
Fructose transport in Neurospora crassa.   总被引:1,自引:0,他引:1       下载免费PDF全文
A specific fructose uptake system (Km = 0.4 mM) appeared in Neurospora crassa when glucose-grown mycelia were starved. Fructose uptake had kinetics different from those of intramycelial fructose phosphorylation, and uptake appeared to be carrier mediated. The only sugar which competitively inhibited fructose uptake was L-sorbose (Ki = 9 mM). Glucose, 2-deoxyglucose, mannose, and 3-O-methyl glucose were noncompetitive inhibitors of fructose uptake. Incubation of glucose-grown mycelia with glucose, 2-deoxyglucose, or mannose prevented derepression of the fructose transport system, whereas incubation with 3-O-methyl glucose caused the appearance of five times as much fructose uptake activity as did starvation conditions.  相似文献   

4.
Since the opportunistic pathogen Pneumocystis carinii grows only slowly in vitro, the mechanism of glucose uptake was investigated to better understand how the organism transports nutrients. Using the non-metabolizable analogue 2-deoxyglucose, two uptake systems were detected with Q(10) values of 2.12 and 2.09, respectively. One had a high affinity (K(m)=67.5 microM) and the other a low affinity (K(m)=5.99 mM) for 2-deoxyglucose uptake. Glucose or deoxyglucose phosphate products from transported radiolabeled substrates were not detected during the incubation times used in this study. Both systems were inhibited by mannose, galactose, fructose, galactosamine, glucosamine, and glucose but not by allose, 5-thioglucose, xylose, glucose 6-phosphate and glucuronic acid. Salicylhydroxamate, KCN, iodoacetate, and 2,4-dinitrophenol inhibited the high-affinity transporter, suggesting it required ATP. Ouabain, monensin, carbonyl cyanide m-chlorophenylhydrazone, and N,N'-dicyclohexylcarbodiimide also inhibited deoxyglucose uptake, as did the replacement of Na(+) in the incubation medium with choline, indicating requirements for Na(+) and H(+). The high-affinity system was also inhibited by the protein synthesis inhibitors cycloheximide and chloramphenicol. In contrast, the low-affinity system transported deoxyglucose by facilitated diffusion mechanisms. Unlike the human erythrocyte glucose transporter GLUT1, the P. carinii transporters recognized fructose and galactose and were relatively insensitive to cytochalasin B, suggesting that the P. carinii glucose transporters may be good drug targets.  相似文献   

5.
Characterization of the hexose transport system in maize root tips   总被引:1,自引:1,他引:0       下载免费PDF全文
Xia JH  Saglio PH 《Plant physiology》1988,88(4):1015-1020
Sugar-depleted excised maize (Zea mays L.) root tips were used to study the kinetics and the specificity of hexose uptake. It was found that difficulties induced by bulk diffusion and penetration barriers did not exist with root tips. Several lines of evidence indicate the existence of a complex set of uptake systems for hexoses showing an overall biphasic dependence on external sugar concentrations. The results suggest that the high and the low affinity components might be located on the same carrier. One uptake system was specific for fructose, but the high affinity component was repressed by high concentrations of external glucose. A second system was specific for glucose and its analogs (2-deoxy-d-glucose and 3-O-methyl-d-glucose), and a third one, more complex, had a high affinity for glucose and its analogs but could transport fructose when glucose was not present in the external solution. A simple method is proposed to determine the inhibitor constants in competition experiments.  相似文献   

6.
Zygosaccharomyces bailii possesses a constitutive malic enzyme, but only small amounts of malate are decomposed when the cells ferment fructose. Cells growing anaerobically on glucose (glucose cells) decompose malate, whereas fructose cells do not. Only glucose cells show an increase in the intracellular concentration of malate when suspended in a malate-containing solution. The transport system for malate is induced by glucose, but it is repressed by fructose. The synthesis of this transport system is inhibited by cycloheximide. Of the two enantiomers l-malate is transported preferentially. The transport of malate by induced cells is not only inhibited by addition of fructose but also inactivated. This inactivation is independent of the presence of cycloheximide. The transport of malate is inhibited by uranyl ions; various other inhibitors of transport and phosphorylation were of little influence. It is assumed that the inducible protein carrier for malate operates by facilitated diffusion. Fructose cells of Z. bailii and cells of Saccharomyces cerevisiae do not contain a transport system for malate.This research was supported in part by a grant from the Forschungsring des Deutschen Weinbaus.  相似文献   

7.
SYNOPSIS. The uptake of 14C-labeled carbohydrates by Trypanosoma gambiense was studied. Glucose, mannose, glycerol, 2-deoxyglucose and fructose were rapidly absorbed by the parasite, and all had saturation kinetics. The glucose analog 3-O-methylglucose was not taken up by T. gambiense. Competitive inhibition experiments indicate that there are 2 transport loci for the tested substrates. It is suggested that there is a “glucose site” thru which glucose, mannose and glycerol, but not fructose, are transported and a “fructose site” thru which only fructose is transported. The specificity of the glucose-transporting mechanism appears to differ from those of other animals.  相似文献   

8.
The level of glycerol kinase activity in Neurospora crassa was shown to change in response to resuspension of sucrose-grown mycelia in fresh medium containing a new carbon source: the magnitude of the change depended on the new carbon source provided. Certain carbon sources, such as glucose and fructose, inhibited the small increase that occurred in the absence of any carbon source. Others, and in particular deoxyribose, galactose, glycerol and ribose, greatly enhanced this increase. The activity induced by deoxyribose and galactose had the same stability, both in vivo and in vitro, as that induced by glycerol, and as that induced by incubation of Neurospora cultures at low temperatures. The inhibitory carbon sources, such as glucose and fructose, also restricted the increases induced by deoxyribose, galactose and glycerol: they had more effect on the increases induced by glycerol and deoxyribose than on that induced by galactose. The increase in activity that occurs at low temperature was also inhibited by glucose and sucrose.  相似文献   

9.
Fructose transport was not apparently affected in a number of Pseudomonas putida strains with deranged activity of a common glucose-gluconate uptake system, indicating the existence of an independent fructose uptake system. Fructose uptake by glucose-gluconate uptake mutants was induced by fructose and obeyed saturation kinetics (apparent K m =0.3 mM). The fructose uptake system serves to transport glucose in addition to fructose. The entry of fructose into P. putida cells appears to be mediated also by the glucose-gluconate uptake system, as shown by the ability to accumulate fructose of wild type cells grown on glucose, a substrate that induces the glucose-gluconate uptake system but not the fructose uptake system. In addition, fructose was found to be an inducer of the glucose-gluconate uptake system. The physiological significance of these observations is not clear because the fructose uptake system can provide the cell with a high enough internal concentration of fructose to support maximum growth rate on this hexose, as shown by following the growth course of glucose-gluconate uptake mutants on fructose.  相似文献   

10.
11.
Abstract In the light leaf spot fungus Pyrenopeziza brassicae , the kinetics of uptake of sucrose, glucose and fructose are all biphasic. At low and high concentrations, glucose and fructose share a high-affinity and a low-affinity hexose carrier respectively, with K m s of 3.5 and 4.6 μM for uptake of glucose and fructose respectively by the high-affinity system, and K s s of 690 and 750 uM for uptake of glucose and fructose by the low-affinity system. The data also suggest the existence of separate high-affinity and low-affinity uptake systems for sucrose. P. brassicae possesses both soluble and paniculate invertase activity, with pH optima of 5.0 and 4.0 respectively. Activity of the particulate invertase is considerably in excess of the highest rates of sucrose uptake.  相似文献   

12.
A comprehensive approach to (13)C tracer studies, labeling measurements by gas chromatography-mass spectrometry, metabolite balancing, and isotopomer modeling, was applied for comparative metabolic network analysis of lysine-producing Corynebacterium glutamicum on glucose or fructose. Significantly reduced yields of lysine and biomass and enhanced formation of dihydroxyacetone, glycerol, and lactate in comparison to those for glucose resulted on fructose. Metabolic flux analysis revealed drastic differences in intracellular flux depending on the carbon source applied. On fructose, flux through the pentose phosphate pathway (PPP) was only 14.4% of the total substrate uptake flux and therefore markedly decreased compared to that for glucose (62.0%). This result is due mainly to (i) the predominance of phosphoenolpyruvate-dependent phosphotransferase systems for fructose uptake (PTS(Fructose)) (92.3%), resulting in a major entry of fructose via fructose 1,6-bisphosphate, and (ii) the inactivity of fructose 1,6-bisphosphatase (0.0%). The uptake of fructose during flux via PTS(Mannose) was only 7.7%. In glucose-grown cells, the flux through pyruvate dehydrogenase (70.9%) was much less than that in fructose-grown cells (95.2%). Accordingly, flux through the tricarboxylic acid cycle was decreased on glucose. Normalized to that for glucose uptake, the supply of NADPH during flux was only 112.4% on fructose compared to 176.9% on glucose, which might explain the substantially lower lysine yield of C. glutamicum on fructose. Balancing NADPH levels even revealed an apparent deficiency of NADPH on fructose, which is probably overcome by in vivo activity of malic enzyme. Based on these results, potential targets could be identified for optimization of lysine production by C. glutamicum on fructose, involving (i) modification of flux through the two PTS for fructose uptake, (ii) amplification of fructose 1,6-bisphosphatase to increase flux through the PPP, and (iii) knockout of a not-yet-annotated gene encoding dihydroxyacetone phosphatase or kinase activity to suppress overflow metabolism. Statistical evaluation revealed high precision of the estimates of flux, so the observed differences for metabolic flux are clearly substrate specific.  相似文献   

13.
A comprehensive approach to 13C tracer studies, labeling measurements by gas chromatography-mass spectrometry, metabolite balancing, and isotopomer modeling, was applied for comparative metabolic network analysis of lysine-producing Corynebacterium glutamicum on glucose or fructose. Significantly reduced yields of lysine and biomass and enhanced formation of dihydroxyacetone, glycerol, and lactate in comparison to those for glucose resulted on fructose. Metabolic flux analysis revealed drastic differences in intracellular flux depending on the carbon source applied. On fructose, flux through the pentose phosphate pathway (PPP) was only 14.4% of the total substrate uptake flux and therefore markedly decreased compared to that for glucose (62.0%). This result is due mainly to (i) the predominance of phosphoenolpyruvate-dependent phosphotransferase systems for fructose uptake (PTSFructose) (92.3%), resulting in a major entry of fructose via fructose 1,6-bisphosphate, and (ii) the inactivity of fructose 1,6-bisphosphatase (0.0%). The uptake of fructose during flux via PTSMannose was only 7.7%. In glucose-grown cells, the flux through pyruvate dehydrogenase (70.9%) was much less than that in fructose-grown cells (95.2%). Accordingly, flux through the tricarboxylic acid cycle was decreased on glucose. Normalized to that for glucose uptake, the supply of NADPH during flux was only 112.4% on fructose compared to 176.9% on glucose, which might explain the substantially lower lysine yield of C. glutamicum on fructose. Balancing NADPH levels even revealed an apparent deficiency of NADPH on fructose, which is probably overcome by in vivo activity of malic enzyme. Based on these results, potential targets could be identified for optimization of lysine production by C. glutamicum on fructose, involving (i) modification of flux through the two PTS for fructose uptake, (ii) amplification of fructose 1,6-bisphosphatase to increase flux through the PPP, and (iii) knockout of a not-yet-annotated gene encoding dihydroxyacetone phosphatase or kinase activity to suppress overflow metabolism. Statistical evaluation revealed high precision of the estimates of flux, so the observed differences for metabolic flux are clearly substrate specific.  相似文献   

14.
The methyl alpha-glucoside-transport system of Pseudomonas aeruginosa has been characterized with respect to its specificity, energy-dependence, kinetics and regulation. The uptake of glucose involved two components, one of which transported glucose (K(m)=8mum) and methyl alpha-glucoside (K(m)=2.8mm) whereas the other was more complex, involving the extracellular activity of glucose dehydrogenase. Mutants defective in this enzyme have been isolated and characterized. The methyl alpha-glucoside-glucose-transport system was repressed when the organism was grown in the absence of glucose; the induction of this transport system by glucose, and its activity once induced, were inhibited by products of citrate metabolism.  相似文献   

15.
Regulation of the formation and secretion of two cellulase components from Trichoderma reesei QM 9414, cellobiohydrolases I and II (CBH I and CBH II, respectively), by the carbon source was investigated. With monoclonal antibodies against CBH I and CBH II it was found that during cultivation on carbon sources which enable fast growth (glucose, glycerol, and fructose), no formation of CBH I occurred, whereas low levels of CBH II were formed. Lactose and cellulose, which allow comparably slower growth, promoted the formation of both CBH I and CBH II. However, noncarbohydrate carbon sources as citrate or acetate, which also enable only slow growth, did not promote the formation of CBH I or CBH II. The addition of glucose or glycerol to lactose- or cellulose-pregrown mycelia, on the other hand, only partially reduced the formation of CBH I. This reduction was also achieved by several other metabolizable and nonmetabolizable carbon compounds, e.g., fructose, galactose, β-methylglucoside, 2-deoxyglucose, and rhamnose, as well as by transfer to no carbon source at all. This result indicates that the control of CBH I synthesis by the carbon source is due to induction and not to repression. The use of cycloheximide and 5-fluorouracil as inhibitors at and before translation, respectively, revealed a half-life for CBH I mRNA of at least several hours, which may, at least in part, account for the prolonged synthesis of some CBH I under these conditions. Northern (RNA) hybridization with full copies of cbh1 and cbh2 genes indicated that the control of CBH I and CBH II biosyntheses by the carbon source operates mainly at the pretranslational level. We conclude that the low rate of cellulase synthesis on glucose and some other carbon sources is due to the lack of an inducer and not to carbon source repression.  相似文献   

16.
The uptake of glucose by the glucose phosphotransferase system in Escherichia coli was inhibited greater than 90% by ascorbate. The uptake of the nonmetabolizable analog of glucose, methyl-alpha-glucoside, was also inhibited to the same extent, confirming that it was the transport process that was sensitive to ascorbate. Similarly, it was the transport function of mannose phosphotransferase for which mannose and nonmetabolizable 2-deoxyglucose were substrates that was partially inhibited by ascorbate. Other phosphotransferase systems, including those for the uptake of sorbitol, fructose and N-acetylglucosamine, but not mannitol, were also inhibited to varying degrees by ascorbate. The inhibitory effect on the phosphotransferase systems was reversible, required the active oxidation of ascorbate, was sensitive to the presence of free-radical scavengers, and was insensitive to uncouplers. Because ascorbate was not taken up by E. coli, it was concluded that the active inhibitory species was the ascorbate free radical and that it was interacting reversibly with a membrane component, possibly the different enzyme IIB components of the phosphotransferase systems. Ascorbate also inhibited other transport systems causing a slight reduction in the passive diffusion of glycerol, a 50% inhibition of the shock-sensitive uptake of maltose, and a complete inhibition of the proton-symport uptake of lactose. Radical scavengers had little or no effect on the inhibition of these systems.  相似文献   

17.
The metabolism of various organic substrates by suspensions of Mycoplasma mycoides subsp. mycoides in a salts solution was followed by microcalorimetry. Enthalpy changes associated with metabolism were in good agreement with theoretical values. Substrate utilization showed Michaelis kinetics, allowing saturation constants (Km) and maximum specific rates of substrate utilization (Vmax) to be determined. In cells grown on a complex medium containing glucose, Km values were: glucose, fructose, N-acetylglucosamine, glycerol and pyruvate, less than 5 microM; lactate, 20 microM; glucosamine, 130 microns, and mannose, 1 mM. Values of Vmax for glycerol, pyruvate and lactate were similar and approximately twice those for glucose, mannose, glucosamine and N-acetylglucosamine; Vmax for fructose was one-quarter of that for glucose. In cells grown on complex medium in which glucose was replaced by mannose, glucosamine or N-acetylglucosamine, Vmax and Km for the respective growth sugars and for glucose were not significantly affected. However, in cells grown in the presence of fructose, Vmax for fructose increased to the value observed for glucose. It is suggested that M. mycoides is adapted to, and is constitutive for, the utilization of a single sugar (glucose), and a single amino sugar (N-acetylglucosamine), but that in the presence of fructose a fructose-utilizing pathway is induced.  相似文献   

18.
The competitive inhibition of fructokinase by glucose has been proposed as the mechanism by which Zymomonas mobilis preferentially consumes glucose from mixtures of glucose and fructose and accumulates fructose when growing on sucrose. In this study, incorporation of radioactive fructose into biomass was used as a measure of fructose catabolism. It was determined that the rate of fructose incorporation by Z. mobilis CP4 was somewhat lower in the presence of an equimolar concentration of glucose but that the inhibition of fructokinase by glucose was not nearly as severe in vivo as was predicted from in vitro studies. Interestingly, addition of glucose to a culture of Z. mobilis CP4-M2, a glucokinaseless mutant, resulted in an immediate and nearly complete inhibition of fructose incorporation. Furthermore, addition of nonmetabolizeable glucose analogs had a similar effect on fructose catabolism by the wild-type Z. mobilis CP4, and fructose uptake by Z. mobilis CP4-M2 was shown to be severely inhibited by equimolar amounts of glucose. These results suggest that competition for fructose transport plays an important role in preferential catabolism of glucose from sugar mixtures. Indeed, the apparent K(infm) values for sugar uptake by Z. mobilis CP4 were approximately 200 mM for fructose and 13 mM for glucose. Other experiments supported the conclusion that a single facilitated diffusion transport system, encoded by the glf gene, is solely responsible for the uptake of both glucose and fructose. The results are discussed with regard to the hypothesis that the kinetics of sugar transport and phosphorylation allow the preferential consumption of glucose and accumulation of fructose, making the fructose available for the enzyme glucose-fructose oxidoreductase, which forms sorbitol, an important osmoprotectant for Z. mobilis when growing in the presence of high sugar concentrations.  相似文献   

19.
Uptake of Nitrite by Neurospora crassa   总被引:2,自引:1,他引:1       下载免费PDF全文
Like the nitrate transport system, the nitrite uptake system in Neurospora crassa is induced by either nitrate or nitrite. This induction is prevented by cycloheximide, puromycin, or 6-methyl purine. The K(m) for nitrite of the induced nitrite uptake system is 86 muM, and the V(max) is 100 mumol of nitrite per g (wet weight) per h. Nitrite uptake is inhibited by metabolic poisons such as arsenate, dinitrophenol, cyanide, and antimycin A. No repression or inhibition of the nitrite transport system by ammonia, nitrate, or Casamino Acids was observed.  相似文献   

20.
In this study, the effects of phosphate concentration and carbon source on the patterns of alkaline phosphatase (APase) and phospholipase (PLase) expression in Vibrio vulnificus ATCC 29307 were assessed under various conditions. The activities of these enzymes were repressed by excess phosphate (4 mM) in the culture medium, but this repression was reversed upon the onset of phosphate starvation in low phosphate defined medium (LPDM) containing 0.2 mM of phosphate at approximately the end of the exponential growth phase. The expressions of the two enzymes were also influenced by different carbon sources, including glucose, fructose, maltose, glycerol, and sodium acetate at different levels. The APase activity was derepressed most profoundly in LPDM containing fructose as a sole carbon source. However, the repression/derepression of the enzyme by phosphate was not observed in media containing glycerol or sodium acetate. In LPDM-glycerol or sodium acetate, the growth rate was quite low. The highest levels of PLase activity were detected in LPDMsodium acetate, followed by LPDM-fructose. PLase was not fully repressed by high phosphate concentrations when sodium acetate was utilized as the sole carbon source. These results showed that multiple regulatory systems, including the phosphate regulon, may perform a function in the expression of both or either APase and PLC, in the broader context of the survival of V. vulnificus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号