首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measuring the kinetics of membrane phase transitions   总被引:2,自引:0,他引:2  
This article presents a brief review of literature on the physical chemistry of lipid phase transitions with emphasis on their kinetic properties. The theoretical foundations of perturbation techniques, and specifically the volume-perturbation technique are discussed in some detail. These are presented as a rationale for, and introduction to, a volume-perturbation kinetic calorimeter that we have constructed for measurement of the kinetics of lipid phase transitions. The instrument has been applied to study the gel-liquid crystalline phase transition in a variety of phospholipid bilayer systems. The design and implementation of the volume-perturbation calorimeter are presented along with a discussion of the techniques of data analysis. Finally, we present typical results obtained with this methodology for a multilamellar vesicle dispersion of dipalmitoylphosphatidylcholine.  相似文献   

2.
Phase diagrams are presented for dipalmitoylphosphatidylcholine (DPPC) in the presence of sugars (sucrose) over a wide range of relative humidities (RHs). The phase information presented here, determined by small angle X-ray scattering (SAXS), is shown to be consistent with previous results achieved by differential scanning calorimetry (DSC). Both techniques show a significant effect of sucrose concentration on the phase behaviour of this phospholipid bilayer. An experimental investigation into the effect of sugars on the kinetic behaviour of the gel to fluid transition is also presented showing that increasing the sugar content appears to slightly increase the rate at which the transition occurs.  相似文献   

3.
Using a fluorescent sensor for inorganic phosphate, the kinetics of ATP hydrolysis by PcrA helicase were measured in the presence of saturating concentrations of oligonucleotides of various lengths. There is a rapid phase of inorganic phosphate release that is equivalent to several turnovers of the ATPase, followed by slower steady-state ATP hydrolysis. The magnitude of the rapid phase is governed by the length of single-stranded DNA, while the slow phase is independent of its length. A kinetic model is presented in which the rapid phase is associated with translocation along single-stranded DNA, after the PcrA binds randomly along the DNA. There is a linear relationship between the length of single-stranded DNA and both the duration and amplitude of the rapid phase. These data suggest that the translocation activity occurs at 50 bases/s in unidirectional single-base steps, each requiring the hydrolysis of 1 ATP molecule.  相似文献   

4.
The effect of dolichol C(95) on the structure and thermotropic phase behaviour of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine and stearoyloleoylphosphatidylethanolamine has been examined by synchrotron X-ray diffraction and differential scanning calorimetry. The presence of dolichol C(95) had no detectable effects on the temperature of either the gel to ripple or the ripple to liquid-crystal phase transition of dipalmitoylphosphatidylcholine. A proportionate increase of a few degrees in the temperature of the gel to lamellar liquid-crystal phase transition is observed in dispersions of dipalmitoylphosphatidylethanolamine and significantly there is a decrease in the temperature of the lamellar to non-lamellar phase transition of stearoyloleoylphosphatidylethanolamine. There was no significant change in the bilayer repeat spacing of all three mixed dispersions in gel phase in the presence of up to 20 mol% dolichol C(95). Electron density calculations showed that there was no change of bilayer thickness of dipalmitoylphosphatidylcholine with incorporation of up to 7.5 mol% dolichol C(95). These data suggest that effect of dolichol on the phospholipid model membranes depend on both the head group and the hydrocarbon chains of the phospholipid molecules. The presence of dolichol in phosphatidylcholine bilayers conforms to a model in which the polyisoprene compound is phase separated into a central domain sandwiched between the two monolayers in gel phase. In bilayers of phosphatidylethanolamines dolichol tends to stabilize the bilayers in gel phase at low temperatures and destabilize the bilayers in lamellar disordered structure at high temperatures. Non-lamellar structures coexist with lamellar disordered phase over a wide temperature range suggesting that dolichol is enriched in domains of non-lamellar structure and depleted from lamellar phase. These findings are useful to understand the function of dolichol in cell membranes.  相似文献   

5.
Pulmonary alveolar type II cells synthesize, secrete, and recycle the components of pulmonary surfactant. In this report we present evidence that dipalmitoylphosphatidylcholine is a potent inhibitor of surfactant lipid secretion by type II cells. Monoenoic and dienoic phosphatidylcholines with fatty acids of 16 or 18 carbons are ineffective as inhibitors of surfactant lipid secretion. In contrast, disaturated phosphatidylcholines, with either symmetric or asymmetric pairs of fatty acids of 14, 16, or 18 carbons, exhibit inhibition of surfactant secretion that correlates extremely well with the phase transition temperature (Tc) of the phospholipid. The inhibitory activity of dipalmitoylphosphatidylcholine is not dependent upon lipid stereochemistry. N-Methylated derivatives of dipalmitoylphosphatidylethanolamine are significantly less effective than phosphatidylcholine as inhibitors. Phosphatidylcholines below their phase transition temperature are inhibitors of surfactant secretion, whereas those above their phase transition temperature are either ineffective or weakly inhibitory. The phase transition dependence of inhibition is observed when type II cells are incubated at 37 degrees C with different species of phosphatidylcholine. In addition, if type II cells are stimulated to secrete at different temperatures the efficacy of a given phospholipid as an inhibitor is dependent on its relationship to Tc (i.e. dipalmitoylphosphatidylcholine with a Tc of 41 degrees C significantly inhibits secretion at 37 degrees C but not at 42 degrees C). Inhibition of surfactant secretion by dipalmitoylphosphatidylcholine is abrogated when it is incorporated into the same liposome with dioleoylphosphatidylcholine as a 50:50 mixture. In contrast, the simultaneous addition of two separate populations of liposomes, one composed of dipalmitoylphosphatidylcholine and the other composed of dioleoylphosphatidylcholine, does not significantly alter the inhibitory activity found with dipalmitoylphosphatidylcholine alone. These data provide compelling evidence that the physical state of phosphatidylcholine can regulate surfactant secretion from alveolar type II cells and suggest a unique mechanism for regulating exocytosis in the alveolus of the lung.  相似文献   

6.
The effect of dolichol C95 on the structure and thermotropic phase behaviour of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine and stearoyloleoylphosphatidylethanolamine has been examined by synchrotron X-ray diffraction and differential scanning calorimetry. The presence of dolichol C95 had no detectible effects on the temperature of either the gel to ripple or the ripple to liquid-crystal phase transition of dipalmitoylphosphatidylcholine. A proportionate increase of a few degrees in the temperature of the gel to lamellar liquid-crystal phase transition is observed in dispersions of dipalmitoylphosphatidylethanolamine and significantly there is a decrease in the temperature of the lamellar to non-lamellar phase transition of stearoyloleoylphosphatidylethanolamine. There was no significant change in the bilayer repeat spacing of all three mixed dispersions in gel phase in the presence of up to 20 mol% dolichol C95. Electron density calculations showed that there was no change of bilayer thickness of dipalmitoylphosphatidylcholine with incorporation of up to 7.5 mol% dolichol C95. These data suggest that effect of dolichol on the phospholipid model membranes depend on both the head group and the hydrocarbon chains of the phospholipid molecules. The presence of dolichol in phosphatidylcholine bilayers conforms to a model in which the polyisoprene compound is phase separated into a central domain sandwiched between the two monolayers in gel phase. In bilayers of phosphatidylethanolamines dolichol tends to stabilize the bilayers in gel phase at low temperatures and destabilize the bilayers in lamellar disordered structure at high temperatures. Non-lamellar structures coexist with lamellar disordered phase over a wide temperature range suggesting that dolichol is enriched in domains of non-lamellar structure and depleted from lamellar phase. These findings are useful to understand the function of dolichol in cell membranes.  相似文献   

7.
The substrate dependence of the time courses of hydrolysis of both small and large unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) by Agkistrodon piscivorus piscivorus monomeric phospholipase A2 is consistent with an activation process involving enzyme aggregation on the vesicle surface. The time course of hydrolysis of large unilamellar vesicles is particularly complex; a slow initial rate of hydrolysis is followed by an extremely abrupt increase in enzyme activity. The length of this slow phase is a minimum at the phase transition temperature of the vesicles. The intrinsic fluorescence intensity of the phospholipase A2 also abruptly increases (50-60%) after a latency period revealing a strong temporal correlation between enzyme activity and the increase in fluorescence intensity. The length of the latency period before the sudden increase in fluorescence intensity is directly proportional to substrate concentration at DPPC concentrations above 20-100 microM. At lower concentrations, the length of the latency period is inversely proportional to the DPPC concentration. Such biphasic substrate dependence is predicted by a previously proposed enzyme activation model involving dimerization on the surface vesicle. Simultaneous monitoring of the protein fluorescence and hydrolysis demonstrates that the magnitude of the fluorescence change and the rate of hydrolysis are in exact temporal correlation. Furthermore, simultaneous monitoring of the fluorescence of the protein and that of a lipid probe, trimethylammonium diphenylhexatriene, indicates a change in lipid vesicle structure prior to, or coincident with, the abrupt change in protein activation. These results are consistent with the hypothesis that the monomeric phospholipase A2 from A. piscivorus piscivorus initially possesses a low level of intrinsic activity toward large unilamellar DPPC vesicles and that the enzyme slowly becomes further activated on the vesicle surface via dimerization. Eventually, the vesicles undergo an abrupt transition in internal structure leading to sudden rapid activation of the enzyme.  相似文献   

8.
The kinetic model of biological oxidation of the organic fraction of municipal solid waste suspension is presented in this paper. The whole process of the aerobic biodegradation consists of three phases: the hydrolysis and intensive biodegradation phase, the limited biodegradation phase and the terminal phase. The first two phases play the most important role and the unstructured model is applied to successfully describe them. Kinetics of microbial decomposition of organic substances is described by the Monod equation. Also, a strong influence of temperature on the process kinetics is observed. The relation between a maximum specific growth rate and temperature is mathematically described.  相似文献   

9.
The hydrolysis of dipalmitoylphosphatidylcholine liposomes by porcine pancreatic phospholipase A2 was studied at 31 degrees C, i.e., with the substrate in the gel phase. Addition of delipidated bovine serum albumin to the assay medium induces the appearance of a latency phase in the time course of the enzymatic action. The lag period can be abolished by addition of free palmitic acid whereas no reversal by lysolecithin is found. The generation of a latency period by albumin appears to be due to its ability to sequester the palmitic acid newly released by the phospholipase A2 catalysis. Thus, the nascent fatty acid seems to be an essential activator of the enzymatic process.  相似文献   

10.
Viral RNA helicases of the NS3/NPH-II group unwind RNA duplexes by processive, directional translocation on one of the duplex strands. The translocation is preceded by a poorly understood unwinding initiation phase. For NPH-II from vaccinia virus, unwinding initiation is rate limiting for the overall unwinding reaction. To develop a mechanistic understanding of the unwinding initiation, we studied kinetic and thermodynamic aspects of this reaction phase for NPH-II in vitro, using biochemical and single molecule fluorescence approaches. Our data show that NPH-II functions as a monomer and that different stages of the ATP hydrolysis cycle dictate distinct binding preferences of NPH-II for duplex versus single-stranded RNA. We further find that the NPH-II-RNA complex does not adopt a single conformation but rather at least two distinct conformations in each of the analyzed stages of ATP hydrolysis. These conformations interconvert with rate constants that depend on the stage of the ATP hydrolysis cycle. Our data establish a basic mechanistic framework for unwinding initiation by NPH-II and suggest that the various stages of the ATP hydrolysis cycle do not induce single, stage-specific conformations in the NPH-II-RNA complex but primarily control transitions between multiple states.  相似文献   

11.
The goal of this work is to evaluate the influence of different pretreatments in the kinetics of enzymatic hydrolysis of sugarcane bagasse and to propose a reliable methodology to easily perform sensitivity analysis and updating kinetic parameters whenever necessary. A kinetic model was modified to represent the experimental data of the batch enzymatic hydrolysis of sugarcane bagasse pretreated with alkaline hydrogen peroxide. The simultaneous estimation of kinetic parameters of the mathematical model was performed using the Pikaia genetic algorithm using batch hydrolysis experimental data obtained with different enzymatic loads. Subsequently, Plackett–Burman designs were used to identify the kinetic parameters with the higher influence on the dynamic behavior of the process variables, which were re-estimated to describe experimental data of the hydrolysis of bagasse pretreated with phosphoric acid + sodium hydroxide. The methodology was accurate and straightforward and can be used whenever there are changes in pretreatment conditions and/or fluctuations in biomass composition in different harvests.  相似文献   

12.
The Ca2+ requirement for lipid hydrolysis catalyzed by phospholipase A2 from Agkistrodon piscivorus piscivorus (App-D49) and porcine pancreas has been examined using small, unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC SUV). Hydrolysis was affected by product inhibition even at early times, and the extent of this inhibition depended on the concentration of divalent cations. The Ca2+ requirement for half-maximal rates of hydrolysis reflected, in part, this non-catalytic role of divalent cations. The presence of 10 mM Mg2+, a cation which does not support catalysis, reduced the Ca2+ required for half-maximal rates of hydrolysis from millimolar concentrations to 40 microM for App-D49. Since the dissociation constant of the enzyme for Ca2+ in solution is 2 mM, these results indicate a change in the interaction of the enzyme with Ca2+ under catalytic conditions. The kinetic dissociation constant of Ca2+ for the pancreatic enzyme was 20 microM which is substantially lower than the dissociation constant in solution, 0.35 mM. The similarity of apparent kinetic dissociation constants for these enzymes suggests that structurally similar features determine the affinity for Ca2+ under catalytic conditions. Evidence is presented that the affinity of phospholipase A2 for Ca2+ changes subsequent to the initial interaction of the enzyme with the substrate interface. However, the apparent Michaelis constant, KMapp, for App-D49, 0.03-0.06 mM, is independent of [Ca2+] and is about the same as the equilibrium dissociation constant for DPPC SUV, 0.14 mM. We thus suggest that KMapp is a steady-state constant.  相似文献   

13.
Amino acids play an important physiological role in all life-forms and can be recovered from bean dregs waste using sub-critical water hydrolysis. This work deals with the hydrolysis kinetics of bean dregs. Kinetics was conducted in a temperature range of 200–240°C using a 300-ml stainless steel batch reactor. Since the reaction kinetics in sub-critical water is very complicated, a simplified kinetic model to describe the hydrolysis of bean dregs is proposed: a single consecutive reaction. The differential equations resulting from the model were fit to experimental data to obtain kinetic rate constants. By means of the Arrhenius plot, the activation energy as well as the pre-exponential factor was determined. A good agreement between the simplified model and the experimental data was obtained. The kinetic parameters provided useful information for understanding the hydrolysis reaction of bean dregs. The experimental results show that the best hydrolysis technology is: reaction temperature 200°C, reaction time 20 min. Under this condition, the total amino acid yield reaches 52.9%. Based on the results, this method could become an efficient method for bean dregs liquefaction, producing valuable amino acid.  相似文献   

14.
The enzymatic hydrolyses of laser pretreated corn stover as a novel pretreatment method were examined to establish a simplified kinetic model for the complicated hydrolysis process. The time dependence of the total reducing sugars amount was closely related to the amounts of cellulosic materials and amounts of cellulase. The evaluated model fitted very well with the experimental data of enzymatic hydrolysis of laser pretreated corn stover under different conditions, including cellulase loading, nature of substrate, substrate loading in the reaction medium. The results indicated that the complex kinetics of cellulase enzymatic saccharification could be assessed with the fractal kinetic model. The cellulase enzymatic reaction process was effectively predicted and controlled with the kinetic model. The result showed that the model could effectively reflect dynamic process of enzyme hydrolysis.  相似文献   

15.
We have investigated the time course of the degradation of a supported dipalmitoylphosphatidylcholine bilayer by phospholipase A2 in aqueous buffer with an atomic force microscope. Contact mode imaging allows visualization of enzyme activity on the substrate with a lateral resolution of less than 10 nm. Detailed analysis of the micrographs reveals a dependence of enzyme activity on the phospholipid organization and orientation in the bilayer. These experiments suggest that it is possible to observe single enzymes at work in small channels, which are created by the hydrolysis of membrane phospholipids. Indeed, the measured rate of hydrolysis of phospholipids corresponds very well with the enzyme activity found in kinetic studies. It was also possible to correlate the number of enzymes at the surface, as calculated from the binding constant to the number of starting points of the hydrolysis. In addition, the width of the channels was found to be comparable to the diameter of a single phospholipase A2 and thus further supports the single-enzyme hypothesis.  相似文献   

16.
Lipase-catalyzed hydrolysis of 2-naphtyl esters in biphasic system   总被引:1,自引:0,他引:1  
The authors measured the rate of hydrolysis of the homologs of 2-naphtyl ester by using a Lewis cell with constant interfacial area to elucidate the kinetic mechanism of the lipase-catalyzed hydrolysis in biphasic system. On the basis of the two-film model, it was found from the analysis of experimental results that the hydrolysis of these substrates proceeds at the interface between the aqueous and organic phases. The interfacial reaction rate could be correlated by Michaelis-Menten mechanism. The values of the rate constant and the Michaelis constant were almost independent of the kinds of 2-naphtyl ester. The values of the interfacial kinetic parameters for 2-naphtyl ester were much greater than those for the hydrolysis in the aqueous phase.  相似文献   

17.
R E Burrier  P Brecher 《Biochemistry》1984,23(22):5366-5371
Sonicated dispersions of egg yolk phosphatidylcholine and triolein as vesicles and microemulsions have been used as substrates for the assay of a purified acid lipase. Previous studies have also shown that triolein localized in the surface phase of emulsions is the preferred substrate. In this study, we examined enzyme activity following several surface modifications using both vesicles and microemulsions. When the acidic phospholipids phosphatidylserine and phosphatidic acid were incorporated into both vesicles and microemulsions at up to 10 mol % of the total phospholipid, a dose-dependent reduction in the apparent Km was observed. Using the vesicles as substrate, a dose-dependent decrease in Vmax was also observed. Agarose gel electrophoresis was used to verify suspected changes in net particle charge. Analogous inclusion of phosphatidylethanolamine, sphingomyelin, or cholesterol did not affect kinetic parameters. Addition of oleic acid to sonication mixtures produced vesicles with a decreased apparent Km and Vmax, but triolein hydrolysis in microemulsions was not significantly altered. Triolein-containing vesicles prepared by using dimyristoyl- or dipalmitoylphosphatidylcholine were hydrolyzed maximally at the gel liquid-crystalline transition temperatures of the appropriate phospholipid. Differential scanning calorimetry was used to verify the temperatures of transition in these vesicles. The results indicate that acid lipase activity is influenced by the charge or physical state of the surface phase of model substrates and suggest that degradation of core components of naturally occurring substrates such as lipoprotein may be influenced by chemical changes on the surface of these particles.  相似文献   

18.
In this study, we investigated how the nature of the phospholipid head group and the macromolecular structure of the phospholipid, either as a monomer or incorporated into a lipid matrix, influence the activity of lecithin cholesterol acyltransferase (LCAT). As substrates we used 1,2-bis-(1-pyrenebutanoyl)-phosphatidylcholine, 1, 2-bis-(1-pyrenebutanoyl)-phosphatidylethanolamine and 1, 2-bis-(1-pyrenebutanoyl)-phosphatidyl-alcohols, either as monomers or incorporated into small unilamellar vesicles consisting of dipalmitoylphosphatidylcholine ether. The rate of hydrolysis of the pyrene-labeled phospholipids was determined both by fluorescence and by high performance liquid chromatography. V(max) and K(m) were calculated for the different substrates. The data show that V(max) is 10- to 30-fold higher for the hydrolysis of monomeric phosphatidylcholine (PC) compared to phosphatidylethanolamine (PE) and the phosphatidylalcohols, while K(m) values are comparable. When the fluorescent substrates were incorporated into dipalmitoylphosphatidylcholine ether vesicles, we observed a 4- to 10-fold increase of V(max) for PE and the phosphatidylalcohols, and no significant change for K(m). V(max) for PC remained the same. Natural LCAT mutants causing Fish-Eye Disease (FED) and analogues of these mutants expressed in Cos-1 cells, had similar activity on monomeric PC and PE. These data suggest that the activity of LCAT is determined both by the molecular structure of the phospholipid and by its macromolecular properties. The LCAT activity on monomeric substrates decreases as: phosphatidylcholine&z. Gt;phosphatidylethanolamine congruent withphosphatidylpropanol congruent withphosphatidylethanol congruent withphosphatidylethyleneglycol. The incorporation of PE and the phosphatidylalcohols into a matrix of dipalmitoylphosphatidylcholine decreases the specificity of the phospholipid head group.  相似文献   

19.
Phospholipid translocation (flip-flop) across membrane bilayers is typically assessed via assays utilizing partially water-soluble phospholipid analogs as transport reporters. These assays have been used in previous work to show that phospholipid translocation in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum is facilitated by specific membrane proteins (flippases). To extend these studies to natural phospholipids while providing a framework to guide the purification of a flippase, we now describe an assay to measure the transbilayer translocation of dipalmitoylphosphatidylcholine, a membrane-embedded phospholipid, in proteoliposomes generated from detergent-solubilized rat liver endoplasmic reticulum. Translocation was assayed using phospholipase A(2) under conditions where the vesicles were determined to be intact. Phospholipase A(2) rapidly hydrolyzed phospholipids in the outer leaflet of liposomes and proteoliposomes with a half-time of approximately 0.1 min. However, for flippase-containing proteoliposomes, the initial rapid hydrolysis phase was followed by a slower phase reflecting flippase-mediated translocation of phospholipids from the inner to the outer leaflet. The amplitude of the slow phase was decreased in trypsin-treated proteoliposomes. The kinetic characteristics of the slow phase were used to assess the rate of transbilayer equilibration of phospholipids. For 250-nm diameter vesicles containing a single flippase, the half-time was 3.3 min. Proportionate reductions in equilibration half-time were observed for preparations with a higher average number of flippases/vesicle. Preliminary purification steps indicated that flippase activity could be enriched approximately 15-fold by sequential adsorption of the detergent extract onto anion and cation exchange resins.  相似文献   

20.
Phase equilibria in the phosphatidylcholine-cholesterol system   总被引:35,自引:0,他引:35  
A thermodynamic and a microscopic interaction model are proposed to describe the phase equilibria in the phosphatidylcholine-cholesterol system. The model calculations allow for a solid phase with conformationally ordered acyl chains and liquid phases with conformationally ordered as well as disordered chains. The resulting phase diagram is in excellent agreement with the experimental phase diagram for dipalmitoylphosphatidylcholine bilayers with cholesterol as determined by a recent NMR and calorimetry study. It is thus demonstrated that the phase behaviour of phosphatidylcholine-cholesterol mixtures can be rationalized using only a few basic assumptions: (i) Cholesterol interacts favourably with phosphatidylcholine chains in an extended conformation, (ii) the main transition of pure phosphatidylcholine bilayers takes place in terms of translational variables as well acyl-chain conformational variables, and (iii) cholesterol disturbs the translational order in the crystalline (gel) state of phosphatidylcholine. These results suggest that the occurrence of specific phosphatidylcholine-cholesterol complexes is not implied by the experimental thermodynamic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号