首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A type II arabinogalactan-degrading enzyme (FoGal1) was purified from Fusarium oxysporum 12S, and the corresponding cDNA was isolated. FoGal1 had high similarity to enzymes of glycoside hydrolase family 5. Treatment of larch wood arabinogalactan with the recombinant enzyme indicated that FoGal1 is a β-1,6-galactanase that preferentially debranches β-1,6-galactobiose from the substrate.  相似文献   

2.
The putative endo-beta-1,6-galactanase gene from Streptomyces avermitilis was cloned and expressed in Escherichia coli, and the enzymatic properties of the recombinant enzyme were characterized. The gene consisted of a 1,476-bp open reading frame and encoded a 491-amino-acid protein, comprising an N-terminal secretion signal sequence and glycoside hydrolase family 5 catalytic module. The recombinant enzyme, Sa1,6Gal5A, catalyzed the hydrolysis of beta-1,6-linked galactosyl linkages of oligosaccharides and polysaccharides. The enzyme produced galactose and a range of beta-1,6-linked galacto-oligosaccharides, predominantly beta-1,6-galactobiose, from beta-1,6-galactan chains. There was a synergistic effect between the enzyme and Sa1,3Gal43A in degrading tomato arabinogalactan proteins. These results suggest that Sa1,6Gal5A is the first identified endo-beta-1,6-galactanase from a prokaryote.  相似文献   

3.
Extracellular enzymes with glucanase activities are an important component of actinomycete-fungus antagonism. Streptomyces sp. EF-14 has been previously identified as one of the most potent antagonists of Phytophthora spp. A beta-1,6-glucanase (EC 3.2.1.75; glucan endo-1,6-beta-glucosidase) was purified by four chromatographic steps from the culture supernatant of strain EF-14 grown on a medium with lyophilized cells of Candida utilis as main nutrient source. The glucanase level in this medium followed a characteristic pattern in which the rise of beta-1,6-glucanase activity always preceded that of beta-1,3-glucanase. The molecular mass of the enzyme was estimated to be 65 kDa and the pI approximately 5.5. It hydrolyzed pustulan by an endo-mechanism generating gentiobiose and glucose as final products. Laminarin was not hydrolyzed indicating that the enzyme does not recognize beta-1,6-links flanked by beta-1,3-links. No significant clearing of yeast cell walls in liquid suspensions or in agar plates was observed indicating that this beta-1,6-glucanase is a non-lytic enzyme. This is the first beta-1,6-glucanase characterized from an actinomycete.  相似文献   

4.
A beta-1,6-glucanase was purified to apparent homogeneity from a commercial yeast digestive enzyme prepared from Streptomyces rochei by a series of column chromatographies. The molecular mass of the purified enzyme was 60 kDa by SDS-PAGE. The purified enzyme had an optimum pH range from 4.0 to 6.0 and was stable in the same pH range. The enzyme was stable under 50 degrees C but lost almost all activity at 60 degrees C. The enzyme was specific to beta-1,6-glucan and had little activity towards beta-1,3-glucan and beta-1,4-glucan. When the beta-1,6-glucan was hydrolyzed with the purified enzyme for 5 h, the reaction products contained 20% glucose, 36% gentiobiose, and 44% other oligosaccharides, suggesting that the enzyme is an endo-type glucanase. When the purified enzyme was used for the digestion of the cell wall of Saccharomyces cerevisiae, cell-wall proteins covalently bound to the cell-wall glucan were recovered as soluble forms, suggesting that this enzyme is useful for analysis of yeast-cell wall proteins.  相似文献   

5.
At least three extracellular laminaran hydrolases which hydrolyzed laminaran (beta-1,3:1,6-glucan) from Eisenia bicyclis were secreted in wheat bran solid medium by Trichoderma viride U-1. These three enzymes, lam AI, AII, and B, were purified to electrophoretic homogeneity. Their molecular masses were estimated to be 70.1, 70.4, and 45.0 kDa for lam AI, AII, and B, respectively, by SDS-PAGE. Whereas both lam AI and AII could hydrolyze laminarin from Laminaria digitata, lam AII showed higher activity against Laminaria laminarin rather than Eisenia laminaran. On the other hand, lam B preferentially hydrolyzed pustulan, a beta-1,6-glucan. Laminarioligosaccharide was hydrolyzed by lam AI and AII but not B, whereas gentiooligosaccharide was hydrolyzed by only lam B. It showed that lam AI and AII were specific for beta-1,3-linkages, but lam B was specific for beta-1,6-linkages. These results indicated that T. viride U-1 has a multiple glucanolytic enzyme system.  相似文献   

6.
The filamentous fungus Trichoderma produces, under specific growth conditions, several extracellular fungal cell wall degrading enzymes, amongst them beta-1,6-glucanases. These enzymes seem to play an important role in the antagonistic action of Trichoderma against a wide range of fungal plant pathogens. In this report we describe two different methods for the specific detection of the activity of beta-1,6-glucanase isozymes in gels. After sodium dodecyl sulphate-polyacrylamide gel electrophoresis, beta-1,6-glucanase activity can be assayed in the gel by renaturation of the enzyme, incubation with an overlay agarose gel containing solubilized pustulan (a commercially available beta-1,6-glucan), followed by the staining of the agarose gel with Congo Red. In native isoelectrofocusing gels, as little as 1 mU can be detected after incubation with solubilized pustulan followed by a detection reaction of the released reducing sugars with 2,3,5-triphenyltetrazolium chloride. The latter technique has been successfully applied to the screening of beta-1,6-glucanase isozymes from different Trichoderma strains under different growth conditions.  相似文献   

7.
Montero M  Sanz L  Rey M  Monte E  Llobell A 《The FEBS journal》2005,272(13):3441-3448
A new component of the beta-1,6-glucanase (EC 3.2.1.75) multienzymatic complex secreted by Trichoderma harzianum has been identified and fully characterized. The protein, namely BGN16.3, is the third isozyme displaying endo-beta-1,6-glucanase activity described up to now in T. harzianum CECT 2413. BGN16.3 is an acidic beta-1,6-glucanase that is specifically induced by the presence of fungal cell walls in T. harzianum growth media. The protein was purified to electrophoretical homogenity using its affinity to beta-1,6-glucan as first purification step, followed by chomatofocusing and gel filtration. BGN16.3 has a molecular mass of 46 kDa in SDS/PAGE and a pI of 4.5. The enzyme only showed activity against substrates with beta-1,6-glycosidic linkages, and it has an endohydrolytic mode of action as shown by HPLC analysis of the products of pustulan hydrolysis. The expression profile analysis of BGN16.3 showed a carbon source control of the accumulation of the enzyme, which is fast and strongly induced by fungal cell walls, a condition often regarded as mycoparasitic simulation. The likely involvement beta-1,6-glucanases in this process is discussed.  相似文献   

8.
The enzymes from Trichoderma species that degrade fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal plant pathogens. The mycoparasite Trichoderma harzianum produces at least two extracellular beta-1,6-glucanases, among other hydrolases, when it is grown on chitin as the sole carbon source. One of these extracellular enzymes was purified to homogeneity after adsorption to its substrate, pustulan, chromatofocusing, and, finally, gel filtration. The apparent molecular mass was 43,000, and the isoelectric point was 5.8. The first 15 amino acids from the N terminus of the purified protein have been sequenced. The enzyme was specific for beta-1,6 linkages and showed an endolytic mode of action on pustulan. Further characterization indicated that the enzyme by itself releases soluble sugars and produces hydrolytic halli on yeast cell walls. When combined with other T. harzianum cell wall-degrading enzymes such as beta-1,3-glucanases and chitinases, it hydrolyzes filamentous fungal cell walls. The enzyme acts cooperatively with the latter enzymes, inhibiting the growth of the fungi tested. Antibodies against the purified protein also indicated that the two identified beta-1,6-glucanases are not immunologically related and are probably encoded by two different genes.  相似文献   

9.
An exo-beta-1,3-galactanase gene from Phanerochaete chrysosporium has been cloned, sequenced, and expressed in Pichia pastoris. The complete amino acid sequence of the exo-beta-1,3-galactanase indicated that the enzyme consists of an N-terminal catalytic module with similarity to glycoside hydrolase family 43 and an additional unknown functional domain similar to carbohydrate-binding module family 6 (CBM6) in the C-terminal region. The molecular mass of the recombinant enzyme was estimated as 55 kDa based on SDS-PAGE. The enzyme showed reactivity only toward beta-1,3-linked galactosyl oligosaccharides and polysaccharide as substrates but did not hydrolyze beta-1,4-linked galacto-oligosaccharides, beta-1,6-linked galacto-oligosaccharides, pectic galactan, larch arabinogalactan, arabinan, gum arabic, debranched arabinan, laminarin, soluble birchwood xylan, or soluble oat spelled xylan. The enzyme also did not hydrolyze beta-1,3-galactosyl galactosaminide, beta-1,3-galactosyl glucosaminide, or beta-1,3-galactosyl arabinofuranoside, suggesting that it specifically cleaves the internal beta-1,3-linkage of two galactosyl residues. High performance liquid chromatographic analysis of the hydrolysis products showed that the enzyme produced galactose from beta-1,3-galactan in an exo-acting manner. However, no activity toward p-nitrophenyl beta-galactopyranoside was detected. When incubated with arabinogalactan proteins, the enzyme produced oligosaccharides together with galactose, suggesting that it is able to bypass beta-1,6-linked galactosyl side chains. The C-terminal CBM6 did not show any affinity for known substrates of CBM6 such as xylan, cellulose, and beta-1,3-glucan, although it bound beta-1,3-galactan when analyzed by affinity electrophoresis. Frontal affinity chromatography for the CBM6 moiety using several kinds of terminal galactose-containing oligosaccharides as the analytes clearly indicated that the CBM6 specifically interacted with oligosaccharides containing a beta-1,3-galactobiose moiety. When the degree of polymerization of galactose oligomers was increased, the binding affinity of the CBM6 showed no marked change.  相似文献   

10.
Endophytic fungal beta-1,6-glucanase expression in the infected host grass   总被引:2,自引:0,他引:2  
Mutualistic fungal endophytes infect many grass species and often confer benefits to the hosts such as reduced herbivory by insects and animals. The physiological interactions between the endophytes and their hosts have not been well characterized. Fungal-secreted proteins are likely to be important components of the interaction. In the interaction between Poa ampla and the endophyte Neotyphodium sp., a fungal beta-1,6-glucanase is secreted into the apoplast, and activity of the enzyme is detectable in endophyte-infected plants. Sequence analysis indicates the beta-1,6-glucanase is homologous to enzymes secreted by the mycoparasitic fungi Trichoderma harzianum and Trichoderma virens. DNA gel-blot analysis indicated the beta-1,6-glucanase was encoded by a single gene. As a secreted protein, the beta-1,6-glucanase may have a nutritional role for the fungus. In culture, beta-1,6-glucanase activity was induced in the presence of beta-1,6-glucans. From RNA gel blots, similar beta-1,6-glucanases were expressed in tall fescue (Festuca arundinacea Schreb.) and Chewings fescue (Festuca rubra L. subsp. fallax [Thuill] Nyman) infected with the endophyte species Neotyphodium coenophialum and Epichlo? festucae, respectively.  相似文献   

11.
A gene belonging to glycoside hydrolase family 43 (GH43) was isolated from Streptomyces avermitilis NBRC14893. The gene encodes a modular protein consisting of N-terminal GH43 module and a family 13 carbohydrate-binding module at the C-terminus. The gene corresponding to the GH43 module was expressed in Escherichia coli, and the gene product was characterized. The recombinant enzyme specifically hydrolyzed only beta-1,3-linkage of two D-galactosyl residues at non-reducing ends of the substrates. The analysis of the hydrolysis products indicated that the enzyme produced galactose from beta-1,3-D-galactan in an exo-acting manner. When the enzyme catalyze hydrolysis of the arabinogalactan-protein, the enzyme produced oligosaccharides together with galactose, suggesting that the enzyme is able to accommodate beta-1,6-linked D-galactosyl side chains. These properties are the same as the other previously reported exo-beta-1,3-D-galactanases. Therefore, we concluded the isolated gene certainly encodes an exo-beta-1,3-D-galactanase. This is the first report of exo-beta-1,3-D-galactanase from actinomycetes.  相似文献   

12.
The filamentous fungus Penicillium italicum, grown in a defined liquid medium, produced beta-1,3-glucanase, which remained essentially bound to the cells, and beta-1,6-glucanase, an essentially extracellular enzyme. When glucose was depleted from the medium, when a limited concentration of glucose (0.2%) was maintained, or when the carbon source was galactose (3%) or lactose (3%), a significant increase in the specific activity of beta-1,3-glucanase, in cell extracts, took place. This was paralleled by a very slow rate of growth, and under glucose limitation, the appearance of beta-1,3-glucanase in the medium was also observed. On the other hand, when an excess of glucose, fructose, or sucrose was present, the specific activity remained constant and active growth was promoted. Laminarin, cellobiose, gentiobiose, and isolated Penicillium italicum walls were not capable of significantly inducing beta-1,3-glucanase synthesis to a level beyond that attained by glucose limitation. A similar behavior was observed for beta-1,6-glucanase. beta-1,3-Glucanase and beta-1,6-glucanase are therefore constitutive enzymes subjected to catabolite repression. The results are discussed in the context of the possible functions that have been suggested for glucanases and related enzymes.  相似文献   

13.
Resolution of the crystal structure of the banana fruit endo-beta-1,3-glucanase by synchrotron X-ray diffraction at 1.45-A resolution revealed that the enzyme possesses the eightfold beta/alpha architecture typical for family 17 glycoside hydrolases. The electronegatively charged catalytic central cleft harbors the two glutamate residues (Glu94 and Glu236) acting as hydrogen donor and nucleophile residue, respectively. Modeling using a beta-1,3 linked glucan trisaccharide as a substrate confirmed that the enzyme readily accommodates a beta-1,3-glycosidic linkage in the slightly curved catalytic groove between the glucose units in positions -2 and -1 because of the particular orientation of residue Tyr33 delimiting subsite -2. The location of Phe177 in the proximity of subsite +1 suggested that the banana glucanase might also cleave beta-1,6-branched glucans. Enzymatic assays using pustulan as a substrate demonstrated that the banana glucanase can also cleave beta-1,6-glucans as was predicted from docking experiments. Similar to many other plant endo-beta-1,3-glucanases, the banana glucanase exhibits allergenic properties because of the occurrence of well-conserved IgE-binding epitopes on the surface of the enzyme. These epitopes might trigger some cross-reactions toward IgE antibodies and thus account for the IgE-binding cross-reactivity frequently reported in patients with the latex-fruit syndrome.  相似文献   

14.
Yeast exo-beta-1,3-glucanase gene (EXG1) was expressed in Escherichia coli and the recombinant enzyme (Exg1p) was characterized. The recombinant Exglp had an apparent molecular mass of 45 kDa by SDS-PAGE and the enzyme has a broad specificity for beta-1,3-linkages as well as beta-1,6-linkages, and also for other beta-glucosidic linked substrates, such as cellobiose and pNPG. Kinetic analyses indicate that the enzyme prefers small substrates such as laminaribiose, gentiobiose, and pNPG rather than polysaccharide substrates, such as laminaran or pustulan. With a high concentration of laminaribiose, the enzyme catalyzed transglucosidation forming laminarioligosaccharides. The enzyme was strongly inhibited with high concentrations of laminaran.  相似文献   

15.
The gene lamAI, which encodes a novel laminarinase AI of Trichoderma viride U-1, was cloned using RT-PCR in conjunction with the rapid amplification of cDNA ends (RACE) technique. The open reading frame consisted of 2,277 bp encoding a protein of 759 amino acid residues, including a 32-residue signal prepropeptide. The protein showed 91% sequence similarity to the putative Trichoderma virens beta-1,3-glucanase BGN1, but no significant similarity to fungal beta-1,6-glucanases or beta-1,3-glucanases from other organisms. On 40 h incubation with a solo carbon source, northern analysis revealed that the gene was induced by 0.5% laminaran from Eisenia bicyclis but was not by the same concentration of glucose. The lamAI cDNA was functionally expressed in the methylotrophic yeast Pichia pastoris, resulting in a recombinant enzyme with as high activity against laminaran as native LAMAI. Based on these data, the probable existence of endo-beta-1,3:1,6-glucan hydrolases as a subclass of endo-beta-1,3-glucanases in some mycoparasitic fungi is suggested.  相似文献   

16.
Activity of various glycosidases in the intracellular enzyme fraction of Bacteroides ovatus B4-11 was investigated. During 120 h of incubation at 37 degrees C, ca. 30% of the crude hemicellulose was hydrolyzed by an intracellular enzyme fraction of strain B4-11. Xylose was the major sugar released from crude hemicellulose. Glycosidases (alpha-1,6-glucosidase, alpha-1,4-glucosidase, beta-1,4-glucosidase, and beta-1,4-xylosidase) were induced in B. ovatus B4-11 by crude hemicellulose and heteroxylan. When B. ovatus B4-11 was grown on either crude hemicellulose or heteroxylan, the predominant enzyme in the intracellular enzyme fraction was beta-1,4-xylosidase.  相似文献   

17.
Activity of various glycosidases in the intracellular enzyme fraction of Bacteroides ovatus B4-11 was investigated. During 120 h of incubation at 37 degrees C, ca. 30% of the crude hemicellulose was hydrolyzed by an intracellular enzyme fraction of strain B4-11. Xylose was the major sugar released from crude hemicellulose. Glycosidases (alpha-1,6-glucosidase, alpha-1,4-glucosidase, beta-1,4-glucosidase, and beta-1,4-xylosidase) were induced in B. ovatus B4-11 by crude hemicellulose and heteroxylan. When B. ovatus B4-11 was grown on either crude hemicellulose or heteroxylan, the predominant enzyme in the intracellular enzyme fraction was beta-1,4-xylosidase.  相似文献   

18.
Phospholipase B (Plb1) is secreted by pathogenic fungi and is a proven virulence determinant in Cryptococcus neoformans. Cell-associated Plb1 is presumptively involved in fungal membrane biogenesis and remodelling. We have also identified it in cryptococcal cell walls. Motif scanning programs predict that Plb1 is attached to cryptococcal membranes via a glycosylphosphatidylinositol (GPI) anchor, which could regulate Plb1 export and secretion. A functional GPI anchor was identified in cell-associated Plb1 by (G)PI-specific phospholipase C (PLC)-induced release of Plb1 from strain H99 membrane rafts and inhibition of GPI anchor synthesis by YW3548, which prevented Plb1 secretion and transport to membranes and cell walls. Plb1 containing beta-1,6-linked glucan was released from H99 (wild-type strain) cell walls by beta-1,3 glucanase, consistent with covalent attachment of Plb1 via beta-1,6-linked glucans to beta-1,3-linked glucan in the central scaffold of the wall. Naturally secreted Plb1 also contained beta-1,6-linked glucan, confirming that it originated from the cell wall. Plb1 maintains cell wall integrity because a H99 deletion mutant, DeltaPLB1, exhibited a morphological defect and was more susceptible than H99 to cell wall disruption by SDS and Congo red. Growth of DeltaPLB1 was unaffected by caffeine, excluding an effect of Plb1 on cell wall biogenesis-related signaling pathways. Environmental (heat) stress caused Plb1 accumulation in cell walls, with loss from membranes and reduced secretion, further supporting the importance of Plb1 in cell wall integrity. This is the first demonstration that Plb1 contributes to fungal survival by maintaining cell wall integrity and that the cell wall is a source of secreted enzyme.  相似文献   

19.
A gene encoding an exo-beta-1,3-galactanase from Clostridium thermocellum, Ct1,3Gal43A, was isolated. The sequence has similarity with an exo-beta-1,3-galactanase of Phanerochaete chrysosporium (Pc1,3Gal43A). The gene encodes a modular protein consisting of an N-terminal glycoside hydrolase family 43 (GH43) module, a family 13 carbohydrate-binding module (CBM13), and a C-terminal dockerin domain. The gene corresponding to the GH43 module was expressed in Escherichia coli, and the gene product was characterized. The recombinant enzyme shows optimal activity at pH 6.0 and 50 degrees C and catalyzes hydrolysis only of beta-1,3-linked galactosyl oligosaccharides and polysaccharides. High-performance liquid chromatography analysis of the hydrolysis products demonstrated that the enzyme produces galactose from beta-1,3-galactan in an exo-acting manner. When the enzyme acted on arabinogalactan proteins (AGPs), the enzyme produced oligosaccharides together with galactose, suggesting that the enzyme is able to accommodate a beta-1,6-linked galactosyl side chain. The substrate specificity of the enzyme is very similar to that of Pc1,3Gal43A, suggesting that the enzyme is an exo-beta-1,3-galactanase. Affinity gel electrophoresis of the C-terminal CBM13 did not show any affinity for polysaccharides, including beta-1,3-galactan. However, frontal affinity chromatography for the CBM13 indicated that the CBM13 specifically interacts with oligosaccharides containing a beta-1,3-galactobiose, beta-1,4-galactosyl glucose, or beta-1,4-galactosyl N-acetylglucosaminide moiety at the nonreducing end. Interestingly, CBM13 in the C terminus of Ct1,3Gal43A appeared to interfere with the enzyme activity toward beta-1,3-galactan and alpha-l-arabinofuranosidase-treated AGP.  相似文献   

20.
Yeast and hyphal walls of Candida albicans were extracted with sodium dodecyl sulfate (SDS). Some of the extracted proteins reacted with a specific beta-1,6-glucan antiserum but not with a beta-1,3-glucan antiserum. They lost their beta-1,6-glucan epitope after treatment with ice-cold aqueous hydrofluoric acid, suggesting that beta-1,6-glucan was linked to the protein through a phosphodiester bridge. When yeast and hyphal walls extracted with SDS were subsequently extracted with a pure beta-1,3-glucanase, several mannoproteins that were recognized by both the beta-1,6-glucan antiserum and the beta-1,3-glucan antiserum were released. Both epitopes were sensitive to aqueous hydrofluoric acid treatment, suggesting that beta-1,3-glucan and beta-1,6-glucan are linked to proteins by phosphodiester linkages. The possible role of beta-glucans in the retention of cell wall proteins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号