首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the mechanism by which deregulated expression of c-Myc induces death by apoptosis in serum-deprived fibroblasts. We demonstrate that Myc-induced apoptosis in low serum is inhibited by a restricted group of cytokines, principally the insulin-like growth factors and PDGF. Cytokine-mediated protection from apoptosis is not linked to the cytokines' abilities to promote growth. Protection from apoptosis is evident in the post-commitment (mitogen-independent) S/G2/M phases of the cell cycle and also in cells that are profoundly blocked in cell cycle progression by drugs. Moreover, IGF-I inhibition of apoptosis occurs in the absence of protein synthesis, and so does not require immediate early gene expression. We conclude that c-Myc-induced apoptosis does not result from a conflict of growth signals but appears to be a normal physiological aspect of c-Myc function whose execution is regulated by the availability of survival factors. We discuss the possible implications of these findings for models of mammalian cell growth in vivo.  相似文献   

2.
3.
4.
T A Slotkin 《Life sciences》1979,24(18):1623-1629
The developmental pattern of ornithine decarboxylase (ODC) activity has proven valuable in elucidating the influence of the perinatal environment on maturation of the central and peripheral nervous systems. Effects of hormones, drugs and maternal-neonatal interactions on ODC can be used to predict subsequent alterations in brain growth, central neurotransmitter systems and ontogeny of sympathetic nerve function.  相似文献   

5.
Dibenzoylmethane (DBM) belongs to the flavonoid family and is a minor constituent of the root extract of licorice and the β-diketone analogue of curcumin. It exhibits antimutagenic, anticancer, and chemopreventive effects. Ornithine decarboxylase (ODC), the rate-limiting enzyme of the polyamine biosynthetic pathway, plays an important role in growth, proliferation, and transformation. Our previous studies showed ODC overexpression prevented etoposide-, paclitaxel-, and cisplatin-induced apoptosis. Here, we investigated one mechanism of DBM-induced apoptosis and the antiapoptotic effects of ODC during DBM treatment. We found that DBM induced apoptosis, promoted reactive oxygen species (ROS) generation, and disrupted the mitochondrial membrane potential (Δψ(m). N-acetylcysteine, a ROS scavenger, reduced DBM-induced apoptosis, which led to the loss of Δψ(m) due to reduced ROS. Overexpression of ODC in parental cells had the same effects as the ROS scavenger. The results demonstrated that DBM-induced apoptosis was a ROS-dependent pathway and ODC overexpression blocked DBM-induced apoptosis by inhibiting intracellular ROS production.  相似文献   

6.
7.
多胺是广泛存在于哺乳类组织细胞中的小分子有机化合物,参与细胞的生长和分化等重要的生理过程,也是肿瘤细胞的快速生长所必需。鸟氨酸脱羧酶(omithine decarboxylase,ODC)是多胺合成代谢途径中的第一个限速酶,ODC活性的异常会引起包括肿瘤在内的一系列疾病的发生,由此该酶成为近年来研究的热点。简要综述了ODC与肿瘤关系的研究进展。  相似文献   

8.
Ornithine decarboxylase: a key regulatory protein   总被引:2,自引:0,他引:2  
D H Russell 《Medical biology》1981,59(5-6):286-295
  相似文献   

9.
10.
Methotrexate (MTX), a folate antagonist, was developed for the treatment of malignancies, and is currently used in rheumatoid arthritis (RA) and other chronic inflammatory disorders. It has been proven in short-term and long-term prospective studies that low doses of MTX (0.75 mg/Kg/week) are effective in controlling the inflammatory manifestations of RA. Low-concentrations of MTX achieve apoptosis and clonal deletion of activated peripheral T cells. One of the mechanisms of the anti-inflammatory and immunosuppressive effects may be the production of reactive oxygen species (ROS). However, the drug resistance of MTX in malignancies remains poorly understood. Ornithine decarboxylase (ODC) plays an important role in diverse biological functions, including cell development, differentiation, transformation, growth and apoptosis. In our previous studies, ODC overexpression was shown to prevent TNFα-induced apoptosis via reducing ROS. Here, we also investigated one mechanism of MTX-induced apoptosis and of drug resistance as to the anti-apoptotic effects of ODC during MTX treatment. We found MTX could induce caspase-dependent apoptosis and promote ROS generation together with disrupting the mitochondrial membrane potential (ΔΨm) of HL-60 and Jurkat T cells. Putrescine and ROS scavengers could reduce MTX-induced apoptosis, which leads to the loss of ΔΨm, through reducing intracellular ROS. Overexpression of ODC in parental cells had the same effects as putrescine and the ROS scavengers. Moreover, ODC overexpression prevented the decline of Bcl-2 that maintains ΔΨm, the cytochrome c release and activations of caspase 9 and 3 following MTX treatment. The results demonstrate that MTX-induced apoptosis is ROS-dependent and occurs along a mitochondria-mediated pathway. Overexpressed ODC cells are resistant to MTX-induced apoptosis by reducing intracellular ROS production.  相似文献   

11.
Ornithine decarboxylase in Paracoccidioides brasiliensis, a dimorphic human pathogenic fungus, was more active at 37° C in the yeast phase and at 30° C in the mycelial phase. In contrast to other fungal systems, yeast growth and mycelium-to-yeast transition in P. brasiliensis were accompanied by a high activity of ornithine decarboxylase at the onset of the budding process, the activity of which was inhibited by 1,4-diamino-2-butanone. The activity of ornithine decarboxylase remained at a basal level during vegetative growth of both the mycelial phase and the late stage of yeast phase, and also through the yeast-to-mycelium transition. Received: 18 December 1995 / Accepted: 8 March 1996  相似文献   

12.
13.
14.
Ornithine decarboxylase from calf liver. Purification and properties   总被引:5,自引:0,他引:5  
M K Haddox  D H Russell 《Biochemistry》1981,20(23):6721-6729
Ornithine decarboxylase (ODC) was purified 25000-fold from calf liver to apparent homogeneity by methods developed to circumvent the lability of the enzyme. Appropriate ratios of sample protein applied to column size and/or gradient size were derived for each purification procedure (ion-exchange, gel filtration ahd hydroxylapatite chromatography, electrophoresis, and thiol affinity chromatography) to maintain enzymatic activity. The enzyme was labile to dilution at all steps of the purification; the inclusion of poly(ethylene glycol) or additional protein decreased but did not eliminate the activity loss. The purified enzyme had a Stokes radius of 3.14 and a molecular weight of 54000. The Km for ornithine was 0.12 mM, and pyridoxal phosphate was 2.0 microM; the pH optimum for the decarboxylation reaction was 7.0. Analysis by sievorptive ion-exchange chromatography indicated the presence of three ionic forms. In the presence of Tris-barbital buffer containing thioglycolic acid, the ODC preparation assumed an apparent molecular weight of 100000 and a Stokes radius of 4.5 and retained full catalytic activity.  相似文献   

15.
16.
The activity of ornithine decarboxylase, the rate-controlling enzyme in polyamine biosynthesis, was determined in tissues of normal control rats and rats made diabetic with streptozotocin. In untreated diabetic rats fed ad libitum, ornithine decarboxylase activity was markedly diminished in liver, skeletal muscle, heart and thymus. Ornithine decarboxylase was not diminished in a comparable group of diabetic rats maintained on insulin. Starvation for 48h decreased ornithine decarboxylase activity to very low values in tissues of both normal and diabetic rats. In the normal group, refeeding caused a biphasic increase in liver ornithine decarboxylase; there was a 20-fold increase in activity at 3h followed by a decrease in activity, and a second peak between 9 and 24h. Increases in ornithine decarboxylase in skeletal muscle, heart and thymus were not evident until after 24–48h of refeeding, and only a single increase occurred. The increase in liver ornithine decarboxylase in diabetic rats was greater than in normal rats after 3h of refeeding, but there was no second peak. In peripheral tissues, the increase in ornithine decarboxylase with refeeding was diminished. Skeletal-muscle ornithine decarboxylase is induced more rapidly when meal-fed rats are refed after a period without food. Refeeding these rats after a 48h period without food caused a 5-fold increase in ornithine decarboxylase in skeletal muscle at 3h in control rats but failed to increase activity in diabetic rats. When insulin was administered alone or together with food to the diabetic rats, muscle ornithine decarboxylase increased to activities even higher than in the refed controls. In conclusion, these findings indicate that the regulation of ornithine decarboxylase in many tissues is grossly impaired in diabetes and starvation. They also suggest that polyamine formation in vivo is an integral component of the growth-promoting effect of insulin or some factor dependent on insulin.  相似文献   

17.
Ornithine decarboxylase (ODC, EC 4.1.1.17) was studied in crude extracts of parenchyma slices of dormant tubers activated for 12 h, tuber shoots and shoot apices. It was highest in shoot apices. The enzyme activity was measured by the production of 14CO2 from labelled ornithine; Vmax was 450 nmol (mg protein)-1h-1, Km for ornithine and pyridoxal phosphate were, respectively, 30 m M and 5μ M . Only when partially purified, the 14CO2 production was inhibited by α-difluoromethylornithine, while in crude extracts dithiothreitol was inhibitory. Ornithine and arginine decarboxylase (ADC, EC 4.1.1.19) activities from parenchyma tubers were not greatly altered by exogenously supplemented ornithine, even though its endogenous pool increased. Exogenously supplemented arginine enhanced ornithine decarboxylase activity, whereas putrescine decreased it slightly. The possibility of artifactual activities in the crude extract is also discussed.  相似文献   

18.
Ornithine decarboxylase (ODC) plays an essential role in various biological functions, including cell proliferation, differentiation and cell death. However, how it prevents the cell apoptotic mechanism is still unclear. Previous studies have demonstrated that decreasing the activity of ODC by difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, causes the accumulation of intracellular reactive oxygen species (ROS) and cell arrest, thus inducing cell death. These findings might indicate how ODC exerts anti-oxidative and anti-apoptotic effects. In our study, tumor necrosis factor alpha (TNF-) induced apoptosis in HL-60 and Jurkat T cells. The kinetic studies revealed that the TNF- -induced apoptotic process included intracellular ROS generation (as early as 1 h after treatment), the activation of caspase 8 (3 h), the cleavage of Bid (3 h) and the disruption of mitochondrial membrane potential ( m) (6 h). Furthermore, ROS scavengers, such as glutathione (GSH) and catalase, maintained m and prevented apoptosis upon treatment. Putrescine and overexpression of ODC had similar effects as ROS scavengers in decreasing intracellular ROS and preventing the disruption of m and apoptosis. Inhibition of ODC by DFMO in HL-60 cells only could increase ROS generation, but did not disrupt m or induce apoptosis. However, DFMO enhanced the accumulation of ROS, disruption of m and apoptosis when cells were treated with TNF- . ODC overexpression avoided the decline of Bcl-2, prevented cytochrome c release from mitochondria and inhibited the activation of caspase 8, 9 and 3. Overexpression of Bcl-2 maintained m and prevented apoptosis, but could not reduce ROS until four hours after TNF- treatment. According to these data, we suggest that TNF- induces apoptosis mainly by a ROS-dependent, mitochondria-mediated pathway. Furthermore, ODC prevents TNF- -induced apoptosis by decreasing intracellular ROS to avoid Bcl-2 decline, maintain m, prevent cytochrome c release and deactivate the caspase cascade pathway.  相似文献   

19.
The enzymic decarboxylation of ornithine by adult rat brain largely occurs in the particulate fraction. The activity is primarily due to ornithine decarboxylase (ODC) as evidenced by several criteria: i) the concurrent production of equimolar amounts of CO2 and putrescine, ii) the sensitivity of the reaction to difluoromethylornithine (DFMO), a specific inhibitor of ODC, iii) the lack of major effect of two inhibitors of ornithine-2-oxo-acid transaminase, upon the DFMO-sensitive component of decarboxylation, iv) the failure to profoundly reduce decarboxylation activity in the presence of a large excess of many aminoacids which could compete for non-specific decarboxylases. The insoluble ODC activity appears largely within synaptosomal and mitochondrial-enriched morphological fractions, yet cannot be attributed to trapped soluble ODC. Particulate ODC has a pH optimum and kinetic parameters that differ from those of soluble cerebral ODC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号