首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

2.
Incubation of hepatocytes from 24 h-starved rats in the presence of 0.5 mM-adenosine decreased gluconeogenesis from lactate, but not from alanine. The inhibition of gluconeogenesis was associated with a stimulation of ketone-body production and an inhibition of pyruvate oxidation. These metabolic changes were suppressed in the presence of iodotubercidin (an inhibitor of adenosine kinase), but were reinforced in the presence of deoxycoformycin (an inhibitor of adenosine deaminase); 2-chloroadenosine induced no change in gluconeogenesis from lactate. These data indicate that the inhibition of gluconeogenesis by adenosine probably results from its conversion into adenine nucleotides. In the presence of lactate or pyruvate, but not with alanine or asparagine, this conversion resulted in a decrease in the [ATP]/[ADP] ratio in both mitochondrial and cytosolic compartments. Adenosine decreased the Pi concentration with all gluconeogenic substrates.  相似文献   

3.
In isolated hepatocytes, dichloroacetate decreased glucose synthesis from lactate, pyruvate and alanine, but not from substrates which bypass pyruvate carboxylase (propionate, glycerol). It was also found to inhibit pyruvate carboxylation in isolated mitochondria, but only after a preincubation period, and had no effect on partially purified pyruvate carboxylase. Hepatocytes and liver mitochondria metabolized [14C] dichloroacetate to oxalate which inhibits pyruvate carboxylase and mimics, without preincubation, the effects of dichloroacetate in mitochondrial pyruvate carboxylation. Thus, oxalate appears to be responsible for the inhibition of gluconeogenesis by dichloroacetate at the level of pyruvate carboxylation.  相似文献   

4.
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.  相似文献   

5.
1. The metabolism of L-alanine was studied in isolated guinea-pig kidney-cortex tubules. 2. In contrast with previous conclusions of Krebs [(1935) Biochem. J. 29, 1951-1969], glutamine was found to be the main carbon and nitrogenous product of the metabolism of alanine (at 1 and 5 mM). Glutamate and ammonia were only minor products. 3. At neither concentration of alanine was there accumulation of glucose, glycogen, pyruvate, lactate, aspartate or tricarboxylic acid-cycle intermediates. 4. Carbon-balance calculations and the release of 14CO2 from [U-14C]alanine indicate that oxidation of the alanine carbon skeleton occurred at both substrate concentrations. 5. A pathway involving alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, pyruvate carboxylase and enzymes of the tricarboxylic acid cycle is proposed for the conversion of alanine into glutamine. 6. Strong evidence for this pathway was obtained by: (i) suppressing alanine removal by amino-oxyacetate, and inhibitor of transaminases, (ii) measuring the release of 14CO2 from [1-14C]alanine, (iii) the use of L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which induced a large increase in ammonia release from alanine, and (iv) the use of fluoroacetate, an inhibitor of aconitase, which inhibited glutamine synthesis with concomitant accumulation of citrate from alanine. 7. In this pathway, the central role of pyruvate carboxylase, which explains the discrepancy between our results and those of Krebs (1935), was also demonstrated.  相似文献   

6.
Isolated acini from lactating rat mammary gland were incubated with glucose (5 mm) and progesterone. The steroid (0.1 mm) decreased glucose utilization and pyruvate accumulation, but increased the formation of lactate. The production of 14CO2 and 14C-labeled lipid from [1-14C]glucose, and the incorporation of 3H2O into lipid were also inhibited by progesterone. At lower concentrations of progesterone (0.01–0.025 mm) the only effects were an increased [lactate], a decreased [pyruvate], and a consequent rise in the lactate/pyruvate ratio. Addition of dichloroacetate, an activator of pyruvate dehydrogenase, did not reverse these effects and assays of active pyruvate dehydrogenase showed no inactivation by progesterone. The steroid did not affect pyruvate utilization but markedly inhibited the removal of lactate, suggesting that progesterone causes a decreased reoxidation of cytosolic NADH and thus alters the cytosolic redox state. The findings are discussed in relation to the physiological role of progesterone during pregnancy and lactation.  相似文献   

7.
Gluconeogenesis in chick embryo isolated hepatocytes   总被引:1,自引:0,他引:1  
1. The effectiveness of gluconeogenic precursors in hepatocytes isolated from 18 day old chick embryos is:Lactate much much greater than pyruvate greater than alanine = glutamine greater than glycerol and other amino acids. This result is qualitatively and quantitatively similar to hepatocytes isolated after hatching. 2. In the presence of endogenous glycogenolysis, conversion of [U-14C]lactate to glucose was used to estimate gluconeogenic flux and its control by hormones. 3. Glucagon failed to stimulate lactate gluconeogenesis although simultaneously increasing glycogenolysis. Insulin had no effects on gluconeogenesis.  相似文献   

8.
Experiments were performed in which the effects of inhibiting gluconeogenesis on ketone-body formation were examined in vivo in starved and severely streptozotocin-diabetic rats. The infusion of 3-mercaptopicolinate, an inhibitor of gluconeogenesis (DiTullio et al., 1974), caused decreases in blood [glucose] and increases in blood [lactate] and [pyruvate] in both normal and ketoacidotic rats. Patterns of liver gluconeogenic intermediates after 3-mercaptopicolinate infusion suggested inhibition at the level of phosphoenolpyruvate carboxykinase. This was confirmed by measurement of hepatic oxaloacetate concentrations which were increased 5-fold after 3-mercaptopicolinate administration. The infusion of 3-mercaptopicolinate caused a decrease in total ketone-body concentrations of 30% in starved rats and 73% in the diabetic animals. Blood glycerol and hepatic triglyceride concentrations remained unchanged. The decreases in ketone-body concentrations were associated with increases in the calculated hepatic cytosolic and mitochondrial [NADH]/[NAD+] ratios. The decrease in ketogenesis seen after inhibition of gluconeogenesis may have resulted from an inhibition of hepatic fatty acid oxidation by the more reduced mitochondrial redox state. It was concluded that gluconeogenesis may stimulate ketogenesis by as much as 30% in severe diabetic ketoacidosis.  相似文献   

9.
Dichloroacetate, an activator of the pyruvate dehydrogenase complex, is known to lower blood glucose, lactate, pyruvate, and alanine when given to diabetic and 24 h fasted rats. Under certain conditions, especially when pyruvate carboxylase is made rate limiting for want of bicarbonate, dichloroacetate effectively inhibits glucose synthesis from lactate by isolated hepatocytes. 2-Chloropropionate also activates the pyruvate dehydrogenase complex, lowers blood glucose, lactate, and pyruvate in 24 h fasted rats, but stimulates gluconeogenesis from lactate or alanine by isolated hepatocytes. Dichloroacetate is catabolized to glyoxylate and thence to oxalate by liver cells, whereas 2-chloropropionate cannot be catabolized to these products. Glyoxylate and oxalate are potent inhibitors of glucose synthesis from lactate, pyruvate, and alanine, but not from dihydroxyacetone. Inhibition is much more pronounced in a bicarbonate-deficient medium, in which pyruvate carboxylase is probably rate limiting for gluconeogenesis. It seems likely, therefore, that the inhibition of lactate gluconeogenesis by dichloroacetate is actually caused by oxalate, which inhibits pyruvate carboxylation. Nevertheless, the major effect of dichloroacetate, and probably the sole effect of 2-chloropropionate, on blood glucose concentration is to limit substrate availability in the blood for hepatic gluconeogenesis. Since oxalic acid stone formation and renal dysfunction may prove to be side effects of any therapeutic application of dichloroacetate, we suggest that further studies on the treatment of hyperglycemia and lactic acidosis with pyruvate dehydrogenase activators be carried out with 2-chloropropionate rather than dichloroacetate.  相似文献   

10.
1. Phosphate-dependent glutaminase activity in the epididymal fat-pad was 15.1 nmol/min per mg of protein. Glutaminase activity demonstrated differences with respect to adipose-tissue sites. Considerable variation was found in different sites of adipose tissue from lean control and Zucker obese animals. 2. Adipocytes incubated in the presence of 2 mM-glutamine utilized glutamine at a rate of 1.8 mumol/h per g dry wt., and glutamate, ammonia, lactate and alanine were produced. Addition of glucose plus insulin increased the rates of glutamine utilization and glutamate, ammonia, lactate and alanine production. Isoprenaline alone or plus glucose further stimulated the rate of glutamine utilization and formation of end products. 3. The rate of incorporation of 14C from glutamine into CO2 was similar to that of glucose, but the rate of incorporation into triacylglycerol was much less. Addition of unlabelled glucose or glucose plus insulin stimulated the rate of incorporation of [14C]glutamine into triacylglycerol, but had no effect on that of 14CO2 formation. Isoprenaline plus glucose increased the rate of incorporation of [14C]glutamine into CO2, but decreased the rate of incorporation into triacylglycerol. 4. In the absence of insulin, the rate of [14C]glutamine incorporation into triacylglycerol was related to the glucose concentration (0-10 mM). However, in the presence of insulin, the rate of incorporation of [14C]glutamine was maximal at 1 mM-glucose.  相似文献   

11.
Extrahepatic glucose release was evaluated during the anhepatic phase of liver transplantation in 14 recipients for localized hepatocarcinoma with mild or absent cirrhosis, who received a bolus of [6,6-2H2]glucose and l-[3-13C]alanine or l-[1,2-13C2]glutamine to measure glucose kinetics and to prove whether gluconeogenesis occurred from alanine and glutamine. Twelve were studied again 7 mo thereafter along with seven healthy subjects. At the beginning of the anhepatic phase, plasma glucose was increased and then declined by 15%/h. The right kidney released glucose, with an arteriovenous gradient of -3.7 mg/dl. Arterial and portal glucose concentrations were similar. The glucose clearance was 25% reduced, but glucose uptake was similar to that of the control groups. Glucose production was 9.5 +/- 0.9 micromol.kg-1. min-1, 30% less than in controls. Glucose became enriched with 13C from alanine and especially glutamine, proving the extrahepatic gluconeogenesis. The gluconeogenic precursors alanine, glutamine, lactate, pyruvate, and glycerol, insulin, and the counterregulatory hormones epinephrine, cortisol, growth hormone, and glucagon were increased severalfold. Extrahepatic organs synthesize glucose at a rate similar to that of postabsorptive healthy subjects when hepatic production is absent, and gluconeogenic precursors and counterregulatory hormones are markedly increased. The kidney is the main, but possibly not the unique, source of extrahepatic glucose production.  相似文献   

12.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

13.
ALANINE METABOLISM IN RAT CORTEX IN VITRO   总被引:1,自引:0,他引:1  
Abstract— (1) The metabolism of [U-14C]alanine was followed in slices of rat cerebral cortex and its interaction with glucose, pyruvate and the metabolic inhibitors fluoracetate and malonate was studied.
(2) Alanine did not stimulate respiration above endogenous levels or affect the rate of oxygen uptake with glucose or pyruvate as cosubstrate. Radioactivity found in CO2 from labelled alanine was only 6 per cent of that from labelled pyruvate. Lactate was not formed from alanine.
(3) After 2 h incubation with [U-14C]alanine the specific activities of glutamate, glutamine and GABA were 20–30 per cent that of alanine. All these specific activities except glutamate were lowered by addition of glucose, but with pyruvate as cosubstrate the specific activity of glutamate was increased by 87 per cent above the level with alanine alone.
(4) The effect of alanine as cosubstrate with [U-14C]pyruvate was to reduce the specific activity of GABA and of glutamine, but not glutamate or lactate; thus there was not an equal dilution of all the metabolites of pyruvate.
(5) Fluoracetate diminished respiration and the production of CO2 from [U-14C]-alanine only slightly; the addition of malonate as well practically abolished both. Fluoracetate lowered incorporation from alanine into all the amino acids, and radioactivity could not be detected in glutamine at all; addition of malonate lowered the specific activity of glutamate to 25 per cent but increased that into aspartate, GABA and glutamine.
(6) The interpretation of these data in terms of known pathways of alanine metabolism is discussed.  相似文献   

14.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

15.
Glutamate metabolism was studied in co-cultures of mouse cerebellar neurons (predominantly glutamatergic) and astrocytes. One set of cultures was superfused (90 min) in the presence of either [U-13C]glucose (2.5 mM) and lactate (1 mM) or [U-13C]lactate (1 mM) and glucose (2.5 mM). Other sets of cultures were incubated in medium containing [U-13C]lactate (1 mM) and glucose (2.5 mM) for 4 h. Regardless of the experimental conditions cell extracts were analyzed using mass spectrometry and nuclear magnetic resonance spectroscopy. 13C labeling of glutamate was much higher than that of glutamine under all experimental conditions indicating that acetyl-CoA from both lactate and glucose was preferentially metabolized in the neurons. Aspartate labeling was similar to that of glutamate, especially when [U-13C]glucose was the substrate. Labeling of glutamate, aspartate and glutamine was lower in the cells incubated with [U-13C]lactate. The first part of the pyruvate recycling pathway, pyruvate formation, was detected in singlet and doublet labeling of alanine under all experimental conditions. However, full recycling, detectable in singlet labeling of glutamate in the C-4 position was only quantifiable in the superfused cells both from [U-13C]glucose and [U-13C]lactate. Lactate and alanine were mostly uniformly labeled and labeling of alanine was the same regardless of the labeled substrate present and higher than that of lactate when superfused in the presence of [U-13C]glucose. These results show that metabolism of pyruvate, the precursor for lactate, alanine and acetyl-CoA is highly compartmentalized. Special issue dedicated to John P. Blass.  相似文献   

16.
Using 13C nuclear magnetic resonance, we have compared the gluconeogenic activity of perfused livers isolated from normal starved mice and mice highly parasitized with Plasmodium berghei, using [2-13C]pyruvate as substrate. In both types of livers, 13C labeling of glucose carbons occurred in positions 1, 2, 5, and 6. The equal proportions of [1,6-13C]- and [2,5-13C]glucose in livers from malarial and normal mice suggests that pyruvate enters the gluconeogenic pathway directly and, to an equal extent, via the tricarboxylic acid cycle. The normalized signal heights indicated that at a given time after the addition of [2-13C]pyruvate the degree of 13C labeling in glucose carbons was reduced in livers from malarial animals, when compared to livers from normal animals. During the course of the perfusion experiment, the [2-13C]lactate resonance signal was always more intense from livers of malarial animals than from normal animals. A reduced activity of hepatic gluconeogenesis in malarial animals was further confirmed by a separate set of perfusion experiments which showed a 56% reduction of the measured rate of glucose production in livers from malarial animals, with respect to that of normal animals. A lowered NAD/NADH ratio in livers from malarial animals would explain the increased proportion of lactate observed in the spectra and be related to a decreased gluconeogenic rate. A more reduced oxidoreduction level in the hepatocytes of a malarial animal would result from a defect in the oxidative phosphorylation activity of mitochondria.  相似文献   

17.
1. Injection of adrenaline into 24 h-starved rats caused a 69% decrease in blood [ketone-body] (3-hydroxybutyrate plus acetoacetate), accompanied by a decreased [3-hydroxybutyrate]/[acetoacetate] ratio. Blood [glucose] and [lactate] increased, but [alanine] was unchanged. 2. Adrenaline also decreased [ketone-body] after intragastric feeding of both long- and medium-chain triacylglycerol. The latter decrease was observed after suppression of lipolysis with 5-methylpyrazole-3-carboxylic acid, indicating that the antiketogenic action of adrenaline was not dependent on the chain length of the precursor fatty acid. 3. The actions of adrenaline to decrease blood [ketone-body] and to increase blood [glucose] were not observed after administration of 3-mercaptopicolinate, an inhibitor of gluconeogenesis. This suggests that these effects of the hormone are related. 4. The possible clinical significance of the results is discussed with reference to the restricted ketosis often observed after surgical or orthopaedic injury.  相似文献   

18.
Ketone-body metabolism in tumour-bearing rats.   总被引:3,自引:3,他引:0       下载免费PDF全文
During starvation for 72 h, tumour-bearing rats showed accelerated ketonaemia and marked ketonuria. Total blood [ketone bodies] were 8.53 mM and 3.34 mM in tumour-bearing and control (non-tumour-bearing) rats respectively (P less than 0.001). The [3-hydroxybutyrate]/[acetoacetate] ratio was 1.3 in the tumour-bearing rats, compared with 3.2 in the controls at 72 h (P less than 0.001). Blood [glucose] and hepatic [glycogen] were lower at the start of starvation in tumour-bearing rats, whereas plasma [non-esterified fatty acids] were not increased above those in the control rats during starvation. After functional hepatectomy, blood [acetoacetate], but not [3-hydroxybutyrate], decreased rapidly in tumour-bearing rats, whereas both ketone bodies decreased, and at a slower rate, in the control rats. Blood [glucose] decreased more rapidly in the hepatectomized control rats. Hepatocytes prepared from 72 h-starved tumour-bearing and control rats showed similar rates of ketogenesis from palmitate, and the distribution of [1-14C] palmitate between oxidation (ketone bodies and CO2) and esterification was also unaffected by tumour-bearing, as was the rate of gluconeogenesis from lactate. The carcinoma itself showed rapid rates of glycolysis and a poor ability to metabolize ketone bodies in vitro. The results are consistent with the peripheral, normal, tissues in tumour-bearing rats having increased ketone-body and decreased glucose metabolic turnover rates.  相似文献   

19.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

20.
1. In isolated rat hepatocytes incubated with pyruvate, ketogenesis increased with increasing pyruvate concentrations and decreased under the influence of 1 mM-alpha-cyano-4-hydroxycinnamate, a known inhibitor of pyruvate transport. Ketogenesis from pyruvate was higher by 30% in hepatocytes prepared from starved than from fed rats. 2. With pyruvate as substrate, 2 mM-dichloroacetate had no effect on ketogenesis of starved-rat hepatocytes, but increased ketogenesis of fed-rat hepatocytes to the 'starved' value. Gluconeogenesis from pyruvate, lactate and alanine, but not from glycerol, was inhibited by dichloroacetate. Both increased ketogenesis and decreased gluconeogenesis may result from an inhibition of pyruvate carboxylase by dichloroacetate. 3. Mitochondria were rapidly isolated from incubated hepatocytes, and [3-hydroxybutyrate]/[3-oxobutyrate] ratios were measured in the mitochondrial pellet ('mitochondrial' ratios) and in whole-cell suspensions ('total' ratios). Increasing pyruvate concentrations increased mitochondrial and decreased total ratios. In the presence of pyruvate (2 to 10 mM), dichloroacetate decreased mitochondrial and increased total ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号