首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A comparative molecular genetic study of 37 Kluyveromyces strains of different origin has made it possible to find molecular markers that can differentiate between the dairy yeast Kluyveromyces lactis var. lactis and the genetically close wild Kl. lactis strains from the European "krassilnikovii" population, which are unable to ferment lactose. A restriction fragment length polymorphism analysis of the IGS2 region of the strains' rDNA reveals two different AluI profiles, one of which corresponds to Kl. lactis var. lactis while the other corresponds to yeasts from the "krassilnikovii" population. The AluI restriction profile of the IGS2 region of the rDNA also makes it possible to differentiate between the physiologically similar species Kl. marxianus and Kl. lactis. The origin of clinical Kl. lactis var. lactis isolates is discussed.  相似文献   

2.
AIMS: Kloeckera apiculata and Saccharomyces cerevisiae yeast species are dominant, respectively, at the early and at the following stages of wine fermentation. In the present study, PCR fingerprinting and NTS region amplification and restriction were applied as techniques for monitoring yeast population performing Aglianico of Vulture grape must fermentation. METHODS AND RESULTS: Thirty S. cerevisiae and 30 K. apiculata strains were typed by PCR fingerprinting with (GAC)5 and (GTG)5 primers and by complete NTS region amplification followed by restriction with HaeIII and MspI enzymes. S. cerevisiae strains generated two patterns with (GAC)5 primer, while (GTG)5 primer yielded a higher genetic polymorphism. Conversely, in K. apiculata Aglianico wine strains (GAC)5 and (GTG)5 primers generated the same profile for all strains. Restriction analysis of the amplified NTS region gave the same profile for all strains within the same species, except for one strain of S. cerevisiae. CONCLUSIONS: The PCR fingerprinting technique was useful in discriminating at strain level S. cerevisiae, particularly with the primer (GTG)5. RFLP patterns generated from the NTS region of the two species can be more easily compared than the patterns resulting from PCR fingerprinting, thus RFLP is more suitable for the rapid monitoring of the species involved in different stages of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The molecular techniques used allow discrimination of S. cerevisiae at strain level and monitoring of the ratio of S. cerevisiae/K. apiculata during the fermentation process. Thus, their application can assure technological adjustments in a suitable time.  相似文献   

3.
In the present work randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) with primers M13 and RF2 was applied to the identification at species level of yeast strains isolated from cheeses. RAPD-PCR analysis of the type strains of different yeast species gave distinctive band profiles that allowed a clear differentiation of all the considered species. Forty-two of the 48 dairy associated yeasts were clearly assigned to the species Saccharomyces cerevisiae, Kluyveromyces marxianus (anamorph Candida kefyr), Kluyveromyces lactis (anamorph Candida sphaerica), Debaryomyces hansenii (anamorph Candida famata), Yarrowia lipolytica and Torulaspora delbrueckii (anamorph Candida colliculosa). The method, which is rapid and easy to perform, could be a useful tool for the identification of yeasts present in dairy products.  相似文献   

4.
The fermentation of lactose (Lac+) in the dairy yeast Kluyveromyces lactis var. lactis is controlled by the LAC4 (beta-galactosidase) and LAC12 (lactose permease) genes. The complementation analysis of twelve Kl. lactis var. drosophilarum natural homothallic Lac- strains of different origin was carried out using the genetic heterothallic lines of Kl. lactis var. lactis of the lac4LAC12 and LAC4lac12 genotypes. It was shown that the natural Lac- strains did not possess the LAC4LAC12 gene cluster. Southern hybridization of chromosomal DNA with LAC4 and LAC12 probes, as well as recombination analysis, showed that Kl. lactis var. drosophilarum yeasts do not have even silent copies of these genes. As distinct from this yeast, natural Lac- strains of the yeast Kl. marxianus are mutants impaired in the lactose permease gene (lac12 analogue), but possess an active beta-galactosidase gene (LAC4 analogue). The origin of the LAC4LAC12 gene cluster of the dairy yeasts Kl. lactis is discussed.  相似文献   

5.
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.  相似文献   

6.
Mitochondrial DNA from the yeast Kluyveromyces marxianus var. lactis (K.lactis) is a circular molecule of 39 kilobase-pairs. A genetic and physical map was constructed. We found that this genome contained a large number of guanine-cytosine (GC)-rich sequence clusters, many of which are characterized by the presence of SacII restriction sites (CCGCGG). The primary sequence of the GC clusters often showed a palindromic structure. These GC clusters were present in several varieties of K.marxianus, but not in others. The presence of these clusters is a major feature that distinguishes K.lactis strains from those of K.marxianus var. marxianus (including K.fragilis).  相似文献   

7.
Lyutova  L. V.  Naumov  G. I.  Shnyreva  A. V.  Naumova  E. S. 《Microbiology》2022,91(4):421-431
Microbiology - According to the modern classification of yeasts, the species Kluyveromyces lactis includes two taxonomic varieties: cultural dairy yeast K. lactis var. lactis and...  相似文献   

8.
Randomly amplified polymorphic DNA (RAPD) was used for identification of Lactococcus lactis subsp. cremoris strains isolated 40 years ago from various dairy homemade products. Total genomic DNAs from six randomly chosen isolates and the reference strain Lactococcus lactis subsp. cremoris NIZO B64 were amplified using four different 10-mer primers. Although most RAPD fragments were common to all six isolates, a sufficient number of polymorphic fragments were also detected that allowed clear distinction of the isolates and the reference strain. The results indicate that RAPD analysis could be a useful and efficient method to distinguish Lactococcus lactis subsp. cremoris at the strain level and to detect genetic diversity.  相似文献   

9.
A highly efficient, rapid, and reliable PCR-based method for distinguishing Lactococcus lactis subspecies (L. lactis subsp. lactis and L. lactis subsp. cremoris) is described. Primers complementary to positions in the glutamate decarboxylase gene have been constructed. PCR analysis with extracted DNA or with cells of different L. lactis strains resulted in specific fragments. The length polymorphism of the PCR fragments allowed a clear distinction of the L. lactis subspecies. The amplified fragment length polymorphism with the primers and the restriction fragment length polymorphism of the amplified products agreed perfectly with the identification based on genotypic and phenotypic analyses, respectively. Isolates from cheese starters were investigated by this method, and amplified fragments of genetic variants were found to be approximately 40 bp shorter than the typical L. lactis subsp. cremoris fragments.  相似文献   

10.
From 2150 isolates from raw milk and milk products, yeast strains were surveyed to produce glucosylceramide from cheese whey. Most of the 54 strains that had accumulated a detectable amount of glucosylceramide were identified as Kluyveromyces lactis var. lactis. The cells of K. lactis var. lactis strain M-11 derived from domestic raw milk accumulated glucosylceramide 2.5-fold higher than K. lactis var. lactis NBRC 1267, the reference strain selected from the culture collections. Strain M-16 of K. lactis var. lactis derived from the same origin was found to synthesize a considerable amount of steryl glucoside in addition to glucosylceramide. Sequence analysis of ribosomal DNA intergenic spacer two regions revealed that strains M-11 and M-16 were diverged from a type strain of K. lactis var. lactis in the same species.  相似文献   

11.
12.
Nine yeast strains were isolated from spontaneous fermentations in the Alsace area of France, during the 1997, 1998 and 1999 grape harvests. Strains were characterized by pulsed-field gel electrophoresis, PCR-restriction fragment length polymorphism (RFLP) of the MET2 gene, delta-PCR, and microsatellite patterns. Karyotypes and MET2 fragments of the nine strains corresponded to mixed chromosomal bands and restriction patterns for both Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. They also responded positively to amplification with microsatellite primers specific to both species and were demonstrated to be diploid. However, meiosis led to absolute nonviability of their spores on complete medium. All the results demonstrated that the nine yeast strains isolated were S. cerevisiaexS. bayanus var. uvarum diploid hybrids. Moreover, microsatellite DNA analysis identified strains isolated in the same cellar as potential parents belonging to S. bayanus var. uvarum and S. cerevisiae.  相似文献   

13.
A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method was developed to detect and identify typical Leuconostoc species. This method utilises a set of specific primers for amplification of the 16S rDNA region of typical Leuconostoc species. All Leuconostoc-type strains, all Leuconostoc isolates from kimchi, Korea's traditional, fermented vegetable product, and strains from closely related genera were examined to verify the identification by this method. The primers resulted in amplification only for nine typical Leuconostoc spp., but not for any other genera tested. The size of the amplified products was 976 bp and the amplicons of the different species could be differentiated from each other with MseI, HaeIII and Tsp509I endonucleases, except for the species Leuconostoc argentinum and Leuconostoc lactis, which were indistinguishable. A PCR-RFLP method for the typical Leuconostoc species was optimized to identify a large number of isolates from fermented vegetable product. This PCR-RFLP method enables the rapid and reliable identification of Leuconostoc species and to distinguish them from the other phylogenetically related lactic acid bacteria in food samples.  相似文献   

14.
Cell wall inulinase (EC 3.2.1.7) was purified from Kluyveromyces marxianus var. marxianus (formerly K. fragilis) and its N-terminal 33-amino acid sequence was established. PCR amplification of cDNA with 2 sets of degenerate primers yielded a genomic probe which was then used to screen a genomic library established in the YEp351 yeast shuttle vector. One of the selected recombinant plasmids allowed an invertase-negative Saccharomyces cerevisiae mutant to grow on inulin. It was shown to contain an inulinase gene (INU 1) encoding a 555-amino acid precursor protein with a typical N-terminal signal peptide. The sequence of inulinase displays a high similarity (67%) to S. cerevisiae invertase, suggesting a common evolutionary origin for yeast beta-fructosidases with different substrate preferences.  相似文献   

15.
Based on the 16S rDNA sequences, species specific primers were designed for the rapid identification by DNA amplification of nine human Bifidobacterium spp., namely B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. dentium, B. infantis, B. longum, B. pseudocatenulatum. B. lactis currently included in dairy products was added to the series. The primers were designed to target different positions of the 16S rDNA, allowing the simultaneous identification of these ten species of Bifidobacterium using two mixtures of primers. The identification procedure described in this paper was validated by establishing a correlation with an AluI restriction pattern of the different full length amplified 16S rDNA. This multiple primer DNA amplification technique was applied for the identification of pure colonies of Bifidobacterium spp. or directly from total bacteria recovered from human fecal samples. The technique was shown to be useful to detect dominant species and, when primers were used in separate reactions, underrepresented species could be identified as well.  相似文献   

16.
Small subunit rRNA sequences have been determined for 10 of the most clinically important pathogenic species of the yeast genus Candida (including Torulopsis [Candida] glabrata and Yarrowia [Candida] lipolytica) and for Hansenula polymorpha. Phylogenetic analyses of these sequences and those of Saccharomyces cerevisiae, Kluyveromyces marxianus var. lactis, and Aspergillus fumigatus indicate that Candida albicans, C. tropicalis, C. parapsilosis, and C. viswanathii form a subgroup within the genus. The remaining significant pathogen, T. glabrata, falls into a second, distinct subgroup and is specifically related to S. cerevisiae and more distantly related to C. kefyr (psuedotropicalis) and K. marxianus var. lactis. The 18S rRNA sequence of Y. lipolytica has evolved rapidly in relation to the other Candida sequences examined and appears to be only distantly related to them. As anticipated, species of several other genera appear to bear specific relationships to members of the genus Candida.  相似文献   

17.
The taxonomic and discriminatory power of RFLP analysis of PCR amplified parts of rhizobial rrn operons was compared to those of genomic PCR fingerprinting with arbitrary and repetitive primers. For this purpose, the two methods were applied for characterization of a group of bacterial isolates referred to as Rhizobium 'hedysari'. As outgroups, representatives of the family Rhizobiaceae, belonging to the Rhizobium galegae, Rhizobium meliloti, Rhizobium leguminosarum and Agrobacterium tumefaciens species were used. By the RFLP analysis of the PCR products corresponding to the variable 5'-half of the 23S rRNA gene and of the amplified spacer region between the 16S and 23S rRNA genes all Rh. 'hedysari' strains studied were tightly clustered together while the outgroups were placed in an outer position. The PCR products of the 3' end parts of the 23S rDNA did not show significant RFL polymorphism and no species differentiation on their basis was possible. In parallel, analysis of the same strains was performed by PCR amplification of their total DNA with 19, 18 and 10 bp long arbitrary primers (AP-PCR) as well as with single primers corresponding to several bacterial repetitive sequences (rep-PCR). By both AP and rep-PCR an identification of every particular strain was achieved. In general, all primers provided taxonomic results that are in agreement with the species and group assignments based on the RFLP analysis of the rrn operons. On the basis of the results presented here it can be concluded that AP and rcp-PCR are more informative and discriminative than rDNA and RFLP analysis of the rhizobial strains studied.  相似文献   

18.
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises pathogenic species associated with different degrees with human infections but also spontaneously fermented dairy products. We aimed therefore at developing a specific identification assay for the SBSEC targeting the 16S rRNA gene comprising a multiplex PCR followed by a differentiating restriction fragment length polymorphisms (RFLP). The multiplex PCR assay was positively applied on 200 SBSEC isolates including reference strains. The assay did not yield false-positive amplifications with strains of closely related bacteria and isolates of non-SBSEC streptococci, lactococci, enterococci, and other genera of dairy origin. The downstream RFLP using MseI and XbaI enabled further discrimination of Streptococcus infantarius/S.?bovis (biotype II.1) from Streptococcus gallolyticus (biotype I and II.2)/Streptococcus alactolyticus and S.?equinus. Furthermore, the newly developed primers can be used directly for Sanger sequencing. Conclusively, this novel PCR/RFLP assay is applicable in the complex dairy microbial communities and provides an important tool to assess the prevalence of members of the SBSEC in dairy products.  相似文献   

19.
The yeast Kluyveromyces marxianus presents several interesting features that make this species a promising industrial yeast for the production of several compounds. In order to take full advantage of this yeast and its particular properties, proper tools for gene disruption and metabolic engineering are needed. The Cre-loxP system is a very versatile tool that allows for gene marker rescue, resulting in mutant strains free of exogenous selective markers, which is a very important aspect for industrial application. As the Cre-loxP system works in some non-conventional yeasts, namely Kluyveromyces lactis, we wished to know whether it also works in K. marxianus. Here, we report the validation of this system in K. marxianus CBS 6556, by disrupting two copies of the LAC4 gene, which encodes a beta-galactosidase activity.  相似文献   

20.
The ITS region of ectomycorrhizal fungi was analyzed, and species-specific PCR primers were designed for 8 ectomycorrhizal Tricholoma species. Although a high degree of intraspecific homology was observed, interspecific variation was sufficient to design species-specific primers based on sequence of the ITS region. PCR amplification with the specific primers generated fragments of the expected sizes from DNA extracted from the strains of each species but gave no amplified products from the strains of the other 16 species in eight genera. These results suggest that sequence of the ITS region is appropriate to be used for species-level identification of ectomycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号