首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purification and characterization of thermostable chaperonin of the thermosome family from hyperthermophilic archaeon Thermococcus profunds are described. The purified thermosome is a homooligomeric complex and an ATPase with maximal activity at 80 degrees C. The electron micrographs obtained from negatively stained as well as frozen-hydrated specimen showed an eight-fold symmetry of chaperonin. They were about 15 nm height and 16 nm in diameter with a central cavity of 5 nm. In order to understand the ATPase cycling of thermosome, we analyzed the oligomeric structure of thermosome treated with several nucleotides.  相似文献   

2.
Many systems are available for the production of recombinant proteins in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for archaea, and no system for high-level gene expression existed for hyperthermophilic organisms. Recently, a virus-based shuttle vector with a reporter gene was developed for the crenarchaeote Sulfolobus solfataricus, a model organism of hyperthermophilic archaea that grows optimally at 80 degrees C (M. Jonuscheit, E. Martusewitsch, K. M. Stedman, and C. Schleper, Mol. Microbiol. 48:1241-1252, 2003). Here we have refined this system for high-level gene expression in S. solfataricus with the help of two different promoters, the heat-inducible promoter of the major chaperonin, thermophilic factor 55, and the arabinose-inducible promoter of the arabinose-binding protein AraS. Functional expression of heterologous and homologous genes was demonstrated, including production of the cytoplasmic sulfur oxygenase reductase from Acidianus ambivalens, an Fe-S protein of the ABC class from S. solfataricus, and two membrane-associated ATPases potentially involved in the secretion of proteins. Single-step purification of the proteins was obtained via fused His or Strep tags. To our knowledge, these are the first examples of the application of an expression vector system to produce large amounts of recombinant and also tagged proteins in a hyperthermophilic archaeon.  相似文献   

3.
4.
Prokaryotic genomes acquire and eliminate blocks of DNA sequence by lateral gene transfer and spontaneous deletion, respectively. The basic parameters of spontaneous deletion, which are expected to influence the course of genome evolution, have not been determined for any hyperthermophilic archaeon. We therefore screened a number of independent pyrimidine auxotrophs of Sulfolobus acidocaldarius for deletions and sequenced those detected. Deletions accounted for only 0.4% of spontaneous pyrE mutations, corresponding to a frequency of about 10(-8) per cell. Nucleotide sequence analysis of five independent deletions showed no significant association of the endpoints with short direct repeats, despite the fact that several such repeats occur within the pyrE gene and that duplication mutations in pyrE reverted at high frequencies. Endpoints of the spontaneous deletions did not coincide with short inverted repeats or potential stem-loop structures. No consensus sequence common to all the deletions could be identified, although two deletions showed the potential of being stabilized by octanucleotide sequences elsewhere in pyrE, and another pair of deletions shared an octanucleotide at their 3' ends. The unusually low frequency and low sequence dependence of spontaneous deletions in the S. acidocaldarius pyrE gene compared to other genetic systems could not be explained in terms of possible constraints imposed by the 5-fluoroorotate selection.  相似文献   

5.
The unfolding and refolding of the extremely heat-stable pullulanase from Pyrococcus woesei has been investigated using guanidinium chloride as denaturant. The monomeric enzyme (90 kDa) was found to be very resistant to chemical denaturation and the transition midpoint for guanidinium chloride-induced unfolding was determined to be 4.86 +/- 0.29 M for intrinsic fluorescence and 4.90 +/- 0.31 M for far-UV CD changes. The unfolding process was reversible. Reactivation of the completely denatured enzyme (in 7.8 M guanidinium chloride) was obtained upon removal of the denaturant by stepwise dilution; 100% reactivation was observed when refolding was carried out via a guanidinium chloride concentration of 4 M in the first dilution step. Particular attention has been paid to the role of Ca2+ which activates and stabilizes this archaeal pullulanase against thermal inactivation. The enzyme binds two Ca2+ ions with a Kd of 0.080 +/- 0.010 microM and a Hill coefficient H of 1.00 +/- 0.10. This cation enhances significantly the stability of the pullulanase against guanidinium chloride-induced unfolding and the DeltaGH2OD increased from 6.83 +/- 0.43 to 8.42 +/- 0.55 kcal.mol-1. The refolding of the pullulanase, on the other hand, was not affected by Ca2+.  相似文献   

6.
Arginine is one of the universal reagents that are effective in assisting refolding of recombinant proteins from inclusion bodies. The mechanism of the effects of arginine on refolding has remained, however, to be elucidated. Here we show that arginine does not stabilize proteins against heat treatment, as demonstrated by little change in melting temperature. It does increase reversibility of thermal melting and reduce aggregation under thermal stress. The observations suggest that arginine may not facilitate refolding, but may suppress aggregation of the proteins during refolding.  相似文献   

7.
Cell-free extracts from the hyperthermophilic archaeon Pyrococcus furiosus were separated into membrane and cytoplasmic fractions and each was analyzed by 2D-gel electrophoresis. A total of 66 proteins were identified, 32 in the membrane fraction and 34 in the cytoplasmic fraction. Six prediction programs were used to predict the subcellular locations of these proteins. Three were based on signal-peptides (SignalP, TargetP, and SOSUISignal) and three on transmembrane-spanning alpha-helices (TSEG, SOSUI, and PRED-TMR2). A consensus of the six programs predicted that 23 of the 32 proteins (72%) from the membrane fraction should be in the membrane and that all of the proteins from the cytoplasmic fraction should be in the cytoplasm. Two membrane-associated proteins predicted to be cytoplasmic by the programs are also predicted to consist primarily of transmembrane-spanning beta-sheets using porin protein models, suggesting that they are, in fact, membrane components. An ATPase subunit homolog found in the membrane fraction, although predicted to be cytoplasmic, is most likely complexed with other ATPase subunits in the membrane fraction. An additional three proteins predicted to be cytoplasmic but found in the membrane fraction, may be cytoplasmic contaminants. These include a chaperone homolog that may have attached to denatured membrane proteins during cell fractionation. Omitting these three proteins would boost the membrane-protein predictability of the models to near 80%. A consensus prediction using all six programs for all 2242 ORFs in the P. furiosus genome estimates that 24% of the ORF products are found in the membrane. However, this is likely to be a minimum value due to the programs' inability to recognize certain membrane-related proteins, such as subunits associated with membrane complexes and porin-type proteins.  相似文献   

8.
A determination was made of the nucleotide sequence of the 2719 bp region of a ribosomal protein gene cluster (PfeL32-PfeL19-PfL18-PfS5-PfL30) containing a 5S rRNA binding protein L18 homolog of hyperthermophilic archaea Pyrococcus furiosus. The organization of the archaeal ribosomal protein gene cluster is similar to that in the spc-operon of Escherichia coli (L6-L18-S5-L30-L15) but has two additional genes, namely those encoding PfeL32 and PfeL19, which were identified as extra proteins that are apparently not present in bacterial E. coli. Using an inducible expression system, P. furiosus mature PfL18 protein and a mutant PfL18 with the basic N-terminal amino acid region deleted were produced in large amounts in E. coli and Northwestern analysis showed the N-terminal region of PfL18, including the conserved arginine-rich region, to have a significant role in 5S rRNA-PfL18 interaction.  相似文献   

9.
BACKGROUND: ATP is the most common phosphoryl group donor for kinases. However, certain hyperthermophilic archaea such as Thermococcus litoralis and Pyrococcus furiosus utilize unusual ADP-dependent glucokinases and phosphofructokinases in their glycolytic pathways. These ADP-dependent kinases are homologous to each other but show no sequence similarity to any of the hitherto known ATP-dependent enzymes. RESULTS: We solved the crystal structure at 2.3 A resolution of an ADP-dependent glucokinase from T. litoralis (tlGK) complexed with ADP. The overall structure can be divided into large and small alpha/beta domains, and the ADP molecule is buried in a shallow pocket in the large domain. Unexpectedly, the structure was similar to those of two ATP-dependent kinases, ribokinase and adenosine kinase. Comparison based on three-dimensional structure revealed that several motifs important both in structure and function are conserved, and the recognition of the alpha- and beta-phosphate of the ADP in the tlGK was almost identical with the recognition of the beta- and gamma-phosphate of ATP in these ATP-dependent kinases. CONCLUSIONS: Noticeable points of our study are the first structure of ADP-dependent kinase, the structural similarity to members of the ATP-dependent ribokinase family, its rare nucleotide specificity caused by a shift in nucleotide binding position by one phosphate unit, and identification of the residues that discriminate ADP- and ATP-dependence. The strict conservation of the binding site for the terminal and adjacent phosphate moieties suggests a common ancestral origin of both the ATP- and ADP-dependent kinases.  相似文献   

10.
11.
Ribonuclease P (RNase P) is a ubiquitous trans-acting ribozyme that processes the 5′ leader sequence of precursor tRNA (pre-tRNA). The RNase P RNA (PhopRNA) of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 is central to the catalytic process and binds five proteins (PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38) which contribute to the enzymatic activity of the holoenzyme. Despite significant progress in determining the crystal structure of the proteins, the structure of PhopRNA remains elusive. Comparative analysis of the RNase P RNA sequences and existing crystallographic structural information of the bacterial RNase P RNAs were combined to generate a phylogenetically supported three-dimensional (3-D) model of the PhopRNA. The model structure shows an essentially flat disk with 16 tightly packed helices and a conserved face suitable for the binding of pre-tRNA. Moreover, the structure in solution was investigated by enzymatic probing and small-angle X-ray scattering (SAXS) analysis. The low resolution model derived from SAXS and the comparative 3-D model have similar overall shapes. The 3-D model provides a framework for a better understanding of structure–function relationships of this multifaceted primordial ribozyme.  相似文献   

12.
Extremophiles - A novel type 1 geranylgeranyl pyrophosphate synthase GACE1337 has been identified within the genome of a newly identified hyperthermophilic archaeon Geoglobus acetivorans. The...  相似文献   

13.
Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.  相似文献   

14.
Organophosphates (OPs) constitute the largest class of insecticides used worldwide and certain of them are potent nerve agents. Consequently, enzymes degrading OPs are of paramount interest, as they could be used as bioscavengers and biodecontaminants. Looking for a stable OPs catalyst, able to support industrial process constraints, a hyperthermophilic phosphotriesterase (PTE) (SsoPox) was isolated from the archaeon Sulfolobus solfataricus and was found to be highly thermostable. The solved 3D structure revealed that SsoPox is a noncovalent dimer, with lactonase activity against “quorum sensing signals”, and therefore could represent also a potential weapon against certain pathogens. The structural basis of the high thermostability of SsoPox has been investigated by performing a careful comparison between its structure and that of two mesophilic PTEs from Pseudomonas diminuta and Agrobacterium radiobacter. In addition, the conformational stability of SsoPox against the denaturing action of temperature and GuHCl has been determined by means of circular dichroism and fluorescence measurements. The data suggest that the two fundamental differences between SsoPox and the mesophilic counterparts are: (a) a larger number of surface salt bridges, also involved in complex networks; (b) a tighter quaternary structure due to an optimization of the interactions at the interface between the two monomers. Pompea Del Vecchio, Mikael Elias and Luigia Merone were contributed equally to this paper.  相似文献   

15.
16.
17.
Although the Archaea exhibit an intriguing combination of bacterial- and eukaryotic-like features, it is not known how these prokaryotic cells segregate their chromosomes before the process of cell division. In the course of our analysis of the third replication origin in the archaeon Sulfolobus solfataricus, we identify and characterise sister chromatid junctions in this prokaryote. This pairing appears to be mediated by hemicatenane-like structures, and we provide evidence that these junctions persist in both replicating and postreplicative cells. These data, in conjunction with fluorescent in situ hybridisation analyses, suggest that Sulfolobus chromosomes have a significant period of postreplicative sister chromatid synapsis, a situation that is more reminiscent of eukaryotic than bacterial chromosome segregation mechanisms.  相似文献   

18.
We have found that the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 produced a thermostable esterase. We isolated and sequenced the esterase gene (est(Pc)) from strain VA1. est(Pc) consisted of 939 bp, corresponding to 313 amino acid residues with a molecular mass of 34,354 Da. As est(Pc) showed significant identity (30%) to mammalian hormone-sensitive lipases (HSLs), esterase of P. calidifontis (Est) could be regarded as a new member of the HSL family. Activity levels of the enzyme were comparable or higher than those of previously reported enzymes not only at high temperature (6,410 U/mg at 90 degrees C), but also at ambient temperature (1,050 U/mg at 30 degrees C). The enzyme displayed extremely high thermostability and was also stable after incubation with various water-miscible organic solvents at a concentration of 80%. The enzyme also exhibited activity in the presence of organic solvents. Est of P. calidifontis showed higher hydrolytic activity towards esters with short to medium chains, with p-nitrophenyl caproate (C(6)) the best substrate among the p-nitrophenyl esters examined. As for the alcoholic moiety, the enzyme displayed esterase activity towards esters with both straight- and branched-chain alcohols. Most surprisingly, we found that this Est enzyme hydrolyzed the tertiary alcohol ester tert-butyl acetate, a feature very rare among previously reported lipolytic enzymes. The extreme stability against heat and organic solvents, along with its activity towards a tertiary alcohol ester, indicates a high potential for the Est of P. calidifontis in future applications.  相似文献   

19.
The sliding clamp, PCNA, of the archaeon Sulfolobus solfataricus P2 is a heterotrimer of three distinct subunits (PCNA1, 2, and 3) that assembles in a defined manner. The PCNA heterotrimer, but not individual subunits, stimulates the activities of the DNA polymerase, DNA ligase I, and the flap endonuclease (FEN1) of S. solfataricus. Distinct PCNA subunits contact DNA polymerase, DNA ligase, or FEN1, imposing a defined architecture at the lagging strand fork and suggesting the existence of a preformed scanning complex at the fork. This provides a mechanism to tightly couple DNA synthesis and Okazaki fragment maturation. Additionally, unique subunit-specific interactions between components of the clamp loader, RFC, suggest a model for clamp loading of PCNA.  相似文献   

20.
和致中 《生命科学》2000,12(4):189-193
本文述及Pyrococcus furiosus的丙酮酸代谢、麦芽糖发酵(高温糖酵解途径)、由丙酮酸糖原异生途径、还原性末端产物--L-丙氨酸的形成和钨对代谢类型的影响等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号