首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Vesicle fusion in eukaryotic cells is mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). In neurons, the t-SNARE SNAP-25 is essential for synaptic vesicle fusion but its exact role in this process is unknown. We have isolated a SNAP-25 temperature-sensitive paralytic mutant in Drosophila, SNAP-25(ts). The mutation causes a Gly50 to Glu change in SNAP-25's first amphipathic helix. A similar mutation in the yeast homologue SEC9 also results in temperature sensitivity, implying a conserved role for this domain in secretion. In vitro-generated 70 kDa SNARE complexes containing SNAP-25(ts) are thermally stable but the mutant SNARE multimers (of approximately 120 kDa) rapidly dissociate at 37 degrees C. The SNAP-25(ts) mutant has two effects on neurotransmitter release depending upon temperature. At 22 degrees C, evoked release of neurotransmitter in SNAP-25(ts) larvae is greatly increased, and at 37 degrees C, the release of neurotransmitter is reduced as compared with controls. Our data suggest that at 22 degrees C the mutation causes the SNARE complex to be more fusion competent but, at 37 degrees C the same mutation leads to SNARE multimer instability and fusion incompetence.  相似文献   

2.
Identifying the molecules that regulate both the recycling of synaptic vesicles and the SNARE components required for fusion is critical for elucidating the molecular mechanisms underlying synaptic plasticity. SNAP-29 was initially isolated as a syntaxin-binding and ubiquitously expressed protein. Previous studies have suggested that SNAP-29 inhibits SNARE complex disassembly, thereby reducing synaptic transmission in cultured superior cervical ganglion neurons in an activity-dependent manner. However, the role of SNAP-29 in regulating synaptic vesicle recycling and short-term plasticity in the central nervous system remains unclear. In the present study, we examined the effect of SNAP-29 on synaptic transmission in cultured hippocampal neurons by dual patch clamp whole-cell recording, FM dye imaging, and immunocytochemistry. Our results demonstrated that exogenous expression of SNAP-29 in presynaptic neurons significantly decreased the efficiency of synaptic transmission after repetitive firing within a few minutes under low and moderate frequency stimulations (0.1 and 1 Hz). In contrast, SNAP-29 did not affect the density of synapses and basal synaptic transmission. Whereas neurotransmitter release was unaffected during intensive stimulation, recovery after synaptic depression was impaired by SNAP-29. Furthermore, knockdown of SNAP-29 expression in neurons by small interfering RNA increased the efficiency of synaptic transmission during repetitive firing. These findings suggest that SNAP-29 acts as a negative modulator for neurotransmitter release, probably by slowing recycling of the SNARE-based fusion machinery and synaptic vesicle turnover.  相似文献   

3.
Synaptic transmission is conducted by neurotransmitters released from presynaptic nerve terminals by means of Ca2+-dependent exocytosis of synaptic vesicles. Formation of a complex of soluble N-ethylmaleimide-sensitive fusion protein receptor (SNARE) proteins, including vesicle-associated membrane protein-2 (VAMP-2) in the synaptic vesicle membrane, and syntaxin 1 and synaptosomal-associated protein of 25 kDa (SNAP-25) in the plasma membrane, is essential for exocytosis. Ionomycin treatment of cultured rat cerebellar granule cells led to cleavage of SNAP-25, but not syntaxin 1 and VAMP-2, that was dependent on extracellular Ca2+. Cleavage was also induced by N-methyl-D-aspartate (NMDA) treatment, but not by depolarization. The use of various site-specific antibodies to SNAP-25, suggested that the cleavage site was in the N-terminal domain of SNAP-25. Calpain inhibitors abolished the Ca2+-dependent cleavage of SNAP-25 and markedly facilitated Ca2+-dependent glutamate (Glu) release from cerebellar granule cells. These results suggest that calpain may play an important role in the long-lasting regulation of synaptic transmission by suppressing neurotransmitter release, possibly through the proteolytic cleavage of SNAP-25.  相似文献   

4.
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC) phosphorylates Ser(187) of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser(187) of SNAP-25 with Ala using "knock-in" technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects.  相似文献   

5.
Botulinum neurotoxin serotypes A and E (BoNT/A and BoNT/E) block neurotransmitter release by cleaving the 206-amino-acid SNARE protein, SNAP-25. For each BoNT serotype, cleavage of SNAP-25 results in the loss of intact protein, the production of an N-terminal truncated protein, and the generation of a small C-terminal peptide. Peptides that mimic the C-terminal fragments of SNAP-25 following BoNT/A or BoNT/E cleavage were shown to depress transmitter release in bovine chromaffin cells and in Aplysia buccal ganglion cells. Similarly, the N-terminal–truncated SNAP-25 resulting from BoNT/A or BoNT/E cleavage has been found to inhibit transmitter exocytosis in various systems. With one exception, however, the inhibitory action of truncated SNAP-25 has not been demonstrated at a well-defined cholinergic synapse. The goal of the current study was to determine the level of inhibition of neurotransmitter release by N-terminal BoNT/A- or BoNT/E-truncated SNAP-25 in two different neuronal systems: cholinergically coupled Aplysia neurons and rat hippocampal cell cultures. Both truncated SNAP-25 products inhibited depolarization-dependent glutamate release from hippocampal cultures and depressed synaptic transmission in Aplysia buccal ganglion cells. These results suggest that truncated SNAP-25 can compete with endogenous SNAP-25 for binding with other SNARE proteins involved in transmitter release, thus inhibiting neurotransmitter exocytosis.  相似文献   

6.
SNAP-25 is a core component of the trimeric SNARE complex mediating vesicle exocytosis during membrane addition for neuronal growth, neuropeptide/growth factor secretion, and neurotransmitter release during synaptic transmission. Here, we report a novel microRNA mechanism of SNAP-25 regulation controlling motor neuron development, neurosecretion, synaptic activity, and movement in zebrafish. Loss of miR-153 causes overexpression of SNAP-25 and consequent hyperactive movement in early zebrafish embryos. Conversely, overexpression of miR-153 causes SNAP-25 down regulation resulting in near complete paralysis, mimicking the effects of treatment with Botulinum neurotoxin. miR-153-dependent changes in synaptic activity at the neuromuscular junction are consistent with the observed movement defects. Underlying the movement defects, perturbation of miR-153 function causes dramatic developmental changes in motor neuron patterning and branching. Together, our results indicate that precise control of SNAP-25 expression by miR-153 is critically important for proper neuronal patterning as well as neurotransmission.  相似文献   

7.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

8.
Exocytosis - syntaxin - synaptobrevin - SNARE synaptic vesicle The lamprey giant reticulospinal synapse can be used to manipulate the molecular machinery of synaptic vesicle exocytosis by presynaptic microinjection. Here we test the effect of disrupting the function of the SNARE protein SNAP-25. Polyclonal SNAP-25 antibodies were shown in an in vitro assay to inhibit the binding between syntaxin and SNAP-25. When microinjected presynaptically, these antibodies produced a potent inhibition of the synaptic response. Ba2+ spikes recorded in the presynaptic axon were not altered, indicating that the effect was not due to a reduced presynaptic Ca2+ entry. Electron microscopic analysis showed that synaptic vesicle clusters had a similar organization in synapses of antibody-injected axons as in control axons, and the number of synaptic vesicles in apparent contact with the presynaptic plasma membrane was also similar. Clathrin-coated pits, which normally occur at the plasma membrane around stimulated synapses, were not detected after injection of SNAP-25 antibodies, consistent with a blockade of vesicle cycling. Thus, SNAP-25 antibodies, which disrupt the interaction with syntaxin, inhibit neurotransmitter release without affecting the number of synaptic vesicles at the plasma membrane. These results provide further support to the view that the formation of SNARE complexes is critical for membrane fusion, but not for the targeting of synaptic vesicles to the presynaptic membrane.  相似文献   

9.
Puffer EB  Lomneth RB  Sarkar HK  Singh BR 《Biochemistry》2001,40(31):9374-9378
The role of SNAP-25 (synaptosomal associated protein of 25 kDa) isotypes in the neurotransmitter release process was examined by varying their relative abundance during PC12 cell differentiation induced by nerve growth factor (NGF). Norepinephrine release by NGF-differentiated PC12 cells is more sensitive to type A botulinum toxin (BoNT/A) than by nondifferentiated cells, while both differentiated and nondifferentiated PC12 cells are equally sensitive to type E botulinum toxin (BoNT/E). The differential sensitivity to BoNT/A corresponds to an altered susceptibility of SNAP-25 isotypes to BoNT/A cleavage in vitro, whereas both isotypes are equally vulnerable to cleavage by BoNT/E. Using recombinant SNAP-25 preparations, we show that BoNT/A cleaves SNAP-25b (present in differentiated cells) 2-fold more readily than SNAP-25a (present in both differentiated and nondifferentiated cells). Structural studies using far-ultraviolet circular dichroism (UV--CD) and thermal denaturation suggest a difference in the polypeptide folding as the underlying molecular basis for the differential sensitivity of SNAP-25b and SNAP-25a to BoNT/A cleavage. We propose differential roles for SNAP-25b and SNAP-25a in the neurotransmitter release process since our results suggest that BoNT/A inhibits neurotransmitter release by primarily cleaving SNAP-25b.  相似文献   

10.
Neurotransmitter release from synaptic vesicles is mediated by complex machinery, which includes the v- and t-SNAP receptors (SNAREs), vesicle-associated membrane protein (VAMP), synaptotagmin, syntaxin, and synaptosome-associated protein of 25 kDa (SNAP-25). They are essential for neurotransmitter exocytosis because they are the proteolytic substrates of the clostridial neurotoxins tetanus neurotoxin and botulinum neurotoxins (BoNTs), which cause tetanus and botulism, respectively. Specifically, SNAP-25 is cleaved by both BoNT/A and E at separate sites within the COOH-terminus. We now demonstrate, using toxin-insensitive mutants of SNAP-25, that these two toxins differ in their specificity for the cleavage site. Following modification within the COOH-terminus, the mutants completely resistant to BoNT/E do not bind VAMP but were still able to form a sodium dodecyl sulfate-resistant complex with VAMP and syntaxin. Furthermore, these mutants retain function in vivo, conferring BoNT/E-resistant exocytosis to transfected PC12 cells. These data provide information on structural requirements within the C-terminal domain of SNAP-25 for its function in exocytosis and raise doubts about the significance of in vitro binary interactions for the in vivo functions of synaptic protein complexes.  相似文献   

11.
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a palmitoylated membrane protein essential for neurotransmitter release from synaptic terminals. We used neuronal cell lines to study the biosynthesis and posttranslational processing of SNAP-25 to investigate how palmitoylation contributes to the subcellular localization of the protein. SNAP-25 was synthesized as a soluble protein that underwent palmitoylation approximately 20 min after synthesis. Palmitoylation of the protein coincided with its stable membrane association. Treatment of cells with brefeldin A or other disrupters of transport inhibited palmitoylation of newly synthesized SNAP-25 and abolished membrane association. These results demonstrate that the processing of SNAP-25 and its targeting to the plasma membrane depend on an intact transport mechanism along the exocytic pathway. The kinetics of SNAP-25 palmitoylation and membrane association and the sensitivity of these parameters to brefeldin A suggest a novel trafficking pathway for targeting proteins to the plasma membrane. In vitro, SNAP-25 stably associated with membranes was not released from the membrane after chemical deacylation. We propose that palmitoylation of SNAP-25 is required for initial membrane targeting of the protein but that other interactions can maintain membrane association in the absence of fatty acylation.  相似文献   

12.
Joshi R  Venkatesh K  Srinivas R  Nair S  Hasan G 《Genetics》2004,166(1):225-236
Signaling by the second messenger inositol 1,4,5-trisphosphate is thought to affect several developmental and physiological processes. Mutants in the inositol 1,4,5-trisphosphate receptor (itpr) gene of Drosophila exhibit delays in molting while stronger alleles are also larval lethal. In a freshly generated set of EMS alleles for the itpr locus we have sequenced and identified single point mutations in seven mutant chromosomes. The predicted allelic strength of these mutants matches the observed levels of lethality. They range from weak hypomorphs to complete nulls. Interestingly, lethality in three heteroallelic combinations has a component of cold sensitivity. The temporal focus of cold sensitivity lies in the larval stages, predominantly at second instar. Coupled with our earlier observation that an itpr homozygous null allele dies at the second instar stage, it appears that there is a critical period for itpr gene function in second instar larvae. Here we show that the focus of this critical function lies in aminergic cells by rescue with UAS-itpr and DdCGAL4. However, this function does not require synaptic activity, suggesting that InsP(3)-mediated Ca(2+) release regulates the neurohormonal action of serotonin.  相似文献   

13.
SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation.  相似文献   

14.
15.
Intrachain disulfide bond formation among the cysteine thiols of SNAP-25, a component of the SNARE protein complex required for neurotransmitter release, has been hypothesized to link oxidative stress and inhibition of synaptic transmission. However, neither the availability in vivo of SNAP-25 thiols, which are known targets of S-palmitoylation, nor the tendency of these thiols to form intrachain disulfide bonds is known. We have examined, in rat brain extracts, both the availability of closely spaced, or vicinal, thiol pairs in SNAP-25 and the propensity of these dithiols toward disulfide bond formation using a method improved by us recently that exploits the high chemoselectivity of phenylarsine oxide (PAO) for vicinal thiols. The results show for the first time that a substantial fraction of soluble and, to a lesser extent, particulate SNAP-25 contain non-acylated PAO-binding thiol pairs and that these thiols in soluble SNAP-25 in particular have a high propensity toward disulfide bond formation. Indeed, disulfide bonds were detected in a small fraction of soluble SNAP-25 even under conditions designed to prevent or greatly limit protein thiol oxidation during experimental procedures. These results provide direct experimental support for the availability, in a subpopulation of SNAP-25, of vicinal thiols that may confer on one or more isoforms of this family of proteins a sensitivity to oxidative stress.  相似文献   

16.
The SNARE complex, consisting of synaptobrevin, syntaxin, and SNAP-25, is essential for calcium-triggered exocytosis in neurosecretory cells. Little is known, however, about how developmentally regulated isoforms and other cognate SNARE components regulate vesicular fusion. To address this question, we examined neuroexocytosis from chromaffin cells of Snap25 null mice rescued by the two splice variants SNAP-25a and SNAP-25b and the ubiquitously expressed homolog SNAP-23. In the absence of SNAP-25, vesicle docking persisted, but primed vesicle pools were empty and fast calcium-triggered release abolished. Single vesicular fusion events showed normal characteristics, except for a shorter duration of the fusion pore. Overexpression of SNAP-25a, SNAP-25b, and SNAP-23 resulted in three distinct phenotypes; SNAP-25b induced larger primed vesicle pools than SNAP-25a, whereas SNAP-23 did not support a standing pool of primed vesicles. We conclude that three alternative SNARE components support exocytosis, but they differ in their ability to stabilize vesicles in the primed state.  相似文献   

17.
Synaptosomal associated protein of 25 kDa (SNAP-25) is a member of the SNARE protein complex that has been implicated in synaptic vesicle docking and fusion. In this report, we have generated SNAP-25 mutants and assayed their functions in SNARE complex formation and glutamate release from cultured rat cerebellar granule cells. In vitro binding studies show that a deletion mutant lacking the C-terminal 181-206 amino acid sequence inhibits the formation of the SNARE core complex. Additional deletion of an N-terminal 1-31 amino acid sequence abolished this inhibitory activity. Adenovirus-mediated gene transfer is used to overexpress wild-type and mutant SNAP-25 in cerebellar granule cells. Neurons overexpressing the wild-type protein show slight reductions in glutamate release, ranging from 10 to 15% in both the developing and mature granule cells. A 30-35% inhibition is obtained with the C-terminal deletion mutant, and the inhibitory effect is abolished in the N- and C-terminal double deletion mutant. These results demonstrate that the SNARE core complex exists in a dynamic and reversible state, and the formation of the core complex is necessary for neurotransmitter release in neurons.  相似文献   

18.
19.
Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly   总被引:7,自引:0,他引:7  
Lao G  Scheuss V  Gerwin CM  Su Q  Mochida S  Rettig J  Sheng ZH 《Neuron》2000,25(1):191-201
Syntaxin-1 is a key component of the synaptic vesicle docking/fusion machinery that forms the SNARE complex with VAMP/synaptobrevin and SNAP-25. Identifying proteins that modulate SNARE complex formation is critical for understanding the molecular mechanisms underlying neurotransmitter release and its modulation. We have cloned and characterized a protein called syntaphilin that is selectively expressed in brain. Syntaphilin competes with SNAP-25 for binding to syntaxin-1 and inhibits SNARE complex formation by absorbing free syntaxin-1. Transient overexpression of syntaphilin in cultured hippocampal neurons significantly reduces neurotransmitter release. Furthermore, introduction of syntaphilin into presynaptic superior cervical ganglion neurons in culture inhibits synaptic transmission. These findings suggest that syntaphilin may function as a molecular clamp that controls free syntaxin-1 availability for the assembly of the SNARE complex, and thereby regulates synaptic vesicle exocytosis.  相似文献   

20.
Evoked synaptic transmission is dependent on interactions between the calcium sensor Synaptotagmin I and the SNARE complex, comprised of Syntaxin, SNAP-25, and Synaptobrevin. Recent evidence suggests that Snapin may be an important intermediate in this process, through simultaneous interactions of Snapin dimers with SNAP-25 and Synaptotagmin. In support of this model, cultured neurons derived from embryonically lethal Snapin null mutant mice exhibit desynchronized release and a reduced readily releasable vesicle pool. Based on evidence that a dimerization-defective Snapin mutation specifically disrupts priming, Snapin is hypothesized to stabilize primed vesicles by structurally coupling Synaptotagmin and SNAP-25. To explore this model in vivo we examined synaptic transmission in viable, adult C. elegans Snapin (snpn-1) mutants. The kinetics of synaptic transmission were unaffected at snpn-1 mutant neuromuscular junctions (NMJs), but the number of docked, fusion competent vesicles was significantly reduced. However, analyses of snt-1 and snt-1;snpn-1 double mutants suggest that the docking role of SNPN-1 is independent of Synaptotagmin. Based on these results we propose that the primary role of Snapin in C. elegans is to promote vesicle priming, consistent with the stabilization of SNARE complex formation through established interactions with SNAP-25 upstream of the actions of Synaptotagmin in calcium-sensing and endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号