首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotriene B4 (LTB4) is a potent pro-inflammatory mediator that has been implicated in the pathogenesis of multiple diseases, including psoriasis, inflammatory bowel disease, multiple sclerosis and asthma. As a method to decrease the level of LTB4 and possibly identify novel treatments, inhibitors of the LTB4 biosynthetic enzyme, leukotriene A4 hydrolase (LTA4-h), have been explored. Here we describe the discovery of a potent inhibitor of LTA4-h, arylamide of glutamic acid 4f, starting from the corresponding glycinamide 2. Analogs of 4f are then described, focusing on compounds that are both active and stable in whole blood. This effort culminated in the identification of amino alcohol 12a and amino ester 6b which meet these criteria.  相似文献   

2.
The synthesis and biological evaluation of a series of N-alkyl glycine amide analogs as LTA4-h inhibitors and the importance of the introduction of a benzoic acid group to the potency and pharmacokinetic parameters of our analogs are described. The lead compound in the series, 4q, has excellent potency and oral bioavailability.  相似文献   

3.
The synthesis and biological evaluation of a series of aryl diamines as inhibitors of LTA4-h inhibitors are described. The optimization which led to the identification of the optimal para-substitution on the diphenyl ether moiety and diamine spacer is discussed. The resulting compounds such as 3l have excellent enzyme and cellular potency as well as desirable pharmacokinetic properties.  相似文献   

4.
We studied synthetic modifications of N-mercaptoacylamino acid derivatives to develop a new class of leukotriene A4 (LTA4) hydrolase inhibitors. S-(4-Dimethylamino)benzyl-l-cysteine derivative 2a (SA6541) showed inhibitory activity against LTA4 hydrolase (IC50, 270 nM) and selectivity over other metallopeptidases except angiotensin-converting enzyme (ACE, IC50, 520 nM). Modification at the para-substituent of the phenyl ring of compound 2a improved LTA4 hydrolase inhibitory activity as well as selectivity over ACE. Finally, we obtained S-(4-cyclohexyl)benzy-l-cysteine derivatives 11l and 16i as potent and selective LTA4 hydrolase inhibitors.  相似文献   

5.
Previously, benzthiazole containing LTA4H inhibitors were discovered that were potent (13), but were associated with the potential for a hERG liability. Utilizing medicinal chemistry first principles (e.g., introducing rigidity, lowering c Log D) a new benzthiazole series was designed, congeners of 13, which led to compounds 7a, 7c, 12ad which exhibited LTA4H IC50 = 3–6 nM and hERG Dofetilide Binding IC50 = 8.9–> >10 μM.  相似文献   

6.
We studied the synthetic modification of structurally similar N-mercaptoacyl-L-proline and (4R)-N-mercaptoacylthiazolidine-4-carboxylic acid to obtain potent leukotriene A(4) (LTA(4)) hydrolase inhibitors. An N-mercaptoacyl group, (2S)-3-mercapto-2-methylpropionyl group, was effective for both scaffolds. Additional introduction of a large substituent such as 4-isopropylbenzylthio (3f), 4-tert-butylbenzylthio (3l) or 4-cyclohexylbenzylthio group (3m) with (S)-configuration at the C(4) position of proline yielded much more potent LTA(4) hydrolase inhibitors (IC(50); 52, 31, and 34 nM, respectively) than captopril (IC(50); 630,000 nM).  相似文献   

7.
The leukotriene A4 hydrolase (LTA4H) is a bifunctional enzyme, containing a peptidase and a hydrolase activity both activities having opposing functions regulating inflammatory response. The hydrolase activity is responsible for the conversion of leukotriene A4 to pro-inflammatory leukotriene B4, and hence, selective inhibitors of the hydrolase activity are of high pharmacological interest. Here we present the thermodynamic characterization of structurally distinct inhibitors of the LTA4H that occupy different regions of the binding site using different biophysical methods. An in silico method for the determination of stabilized water molecules in the binding site of the apo structure of LTA4H is used to interpret the measured thermodynamic data and provided insights for design of novel LTA4H inhibitors.  相似文献   

8.
The synthesis and biological evaluation of a series of functionalized pyrrolidine- and piperidine-containing analogues of our lead LTA(4) hydrolase inhibitor, SC-57461A, is described. A number of compounds showed excellent potency in our in vitro screens and several demonstrated good oral activity in a mouse ex vivo assay. These efforts led to the identification of SC-56938 (14) as a potent, orally active inhibitor of LTA(4) hydrolase.  相似文献   

9.
Novel piperidine and piperazine derivatives have been designed and tested as inhibitors of LTA4 hydrolase (LTA4H). Most potent compounds showed good potency in both enzymatic and functional human whole blood assay. Crystallography studies further confirmed observed structure–activity relationship and LTA4H binding mode for analogs from the piperidine series.  相似文献   

10.
Structure and catalytic mechanisms of leukotriene A4 hydrolase   总被引:1,自引:0,他引:1  
Leukotriene A4 hydrolase catalyzes the final and committed step in the biosynthesis of leukotriene B4, a potent chemotactic agent for neutrophils, eosinophils, monocytes, and T-cells that play key roles in the innate immune response. Recent data strongly implicates leukotriene B4 in the pathogenesis of cardiovascular diseases, in particular arteriosclerosis, myocardial infarction and stroke. Here, we highlight the most salient features of leukotriene A4 hydrolase with emphasis on its biochemistry and structure biology.  相似文献   

11.
2-Modified aristeromycin derivatives and their related analogs were synthesized to investigate their inhibitory activity against human and Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (PfSAHH). 2-Fluoroaristeromycin showed a strong inhibitory activity against PfSAHH selectively and complete resistance to adenosine deaminase.  相似文献   

12.
Novel imidazopyridine derivatives were synthesized according to a very simple protocol and then subjected to cytotoxicity testing against LN-405 cells. Two of the compounds exhibited antiproliferative effects on LN-405 cells at 10 and 75?µM and were selected as lead compounds for further study. Safety experiment for lead compounds on WS1 was carried out and IC50 values were calculated as 480 and 844?µM. LN-405 cell line were incubated with the lead compounds and then tested for DNA damage by comet assay and effects on cell cycle using flow cytometry. The results of these two tests showed that both lead compounds affected the G0/G1 phase and did not allow the cells to reach the synthesis phase. The log BB (blood–brain barrier) and Caco-2 permeability of the synthesized molecules were calculated and it was shown that imidazopyridine derivatives taken orally are likely to pass through gastrointestinal membrane and the blood–brain barrier.  相似文献   

13.
Analysis of leukotriene B4 production by purified rat and human neutrophil leukotriene (LT) A4 hydrolases in the presence of 5(S)-trans-5,6-oxido-7,9-trans-11-cis-eicosatrienoic acid (leukotriene A3) demonstrated that this epoxide is a potent inhibitor of LTA4 hydrolase. Insignificant amounts of 5(S), 12(R)-dihydroxy-6-cis-8,10-trans-eicosatrienoic acid (leukotriene B3) were formed by incubation of rat neutrophils with leukotriene A3 or by the purified rat and human LTA4 hydrolases incubated with leukotriene A3. Leukotriene A3 was shown to be a potent inhibitor of leukotriene B4 production by rat neutrophils and also by purified rat and human LTA4 hydrolases. Covalent coupling of [3H]leukotriene A4 to both rat and human neutrophil LTA4 hydrolases was shown, and this coupling was inhibited by preincubation of the enzymes with leukotriene A4. Preincubation of rat neutrophils with leukotriene A3 also prevented labeling of LTA4 hydrolase by [3H]leukotriene A4. This result indicates that leukotriene A3 prevents covalent coupling of the substrate leukotriene A4 and inhibits the production of leukotriene B4 by blocking the binding of leukotriene A4 to the enzyme.  相似文献   

14.
Fluoro-DHCeA (4) was efficiently synthesized from d-cyclopentenone derivative 5 using electrophilic fluorination as a key step. Fluoro-DHCeA (4) was found to be as potent as DHCeA (3), but exhibited irreversible inhibition of enzyme unlike DHCeA (3) showing reversible inhibition. From this study, 4(')-hydroxymethyl groups of neplanocin A and fluoro-neplanocin A played an important role in binding to the active site of the enzyme.  相似文献   

15.
Kull F  Ohlson E  Lind B  Haeggström JZ 《Biochemistry》2001,40(42):12695-12703
Leukotriene A(4) hydrolase in mammals is a bifunctional zinc metalloenzyme that catalyzes the hydrolysis of leukotriene A(4) into the proinflammatory mediator leukotriene B(4), and also possesses an aminopeptidase activity. Recently we cloned and characterized an leukotriene A(4) hydrolase from Saccharomyces cerevisiae as a leucyl aminopeptidase with an epoxide hydrolase activity. Here we show that S. cerevisiae leukotriene A(4) hydrolase is a metalloenzyme containing one zinc atom complexed to His-340, His-344, and Glu-363. Mutagenetic analysis indicates that the aminopeptidase activity follows a general base mechanism with Glu-341 and Tyr-429 as the base and proton donor, respectively. Furthermore, the yeast enzyme hydrolyzes leukotriene A(4) into three compounds, viz., 5S,6S-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid, leukotriene B(4), and Delta(6)-trans-Delta(8)-cis-leukotriene B(4), with a relative formation of 1:0.2:0.1. In addition, exposure of S. cerevisiae leukotriene A(4) hydrolase to leukotriene A(4) selectively inactivates the epoxide hydrolase activity with a simultaneous stimulation of the aminopeptidase activity. Moreover, kinetic analyses of wild-type and mutated S. cerevisiae leukotriene A(4) hydrolase suggest that leukotriene A(4) binds in one catalytic mode and one tight-binding, regulatory mode. Exchange of a Phe-424 in S. cerevisiae leukotriene A(4) hydrolase for a Tyr, the corresponding residue in human leukotriene A(4) hydrolase, results in a protein that converts leukotriene A(4) into leukotriene B(4) with an improved efficiency and specificity. Hence, by a single point mutation, we could make the active site better suited to bind and turn over the substrate leukotriene A(4), thus mimicking a distinct step in the molecular evolution of S. cerevisiae leukotriene A(4) hydrolase toward its mammalian counterparts.  相似文献   

16.
Leukotriene A4 hydrolase was rapidly and extensively purified from rat neutrophils using anion exchange and gel filtration high-pressure liquid chromatography. The enzyme which converts the allylic epoxide leukotriene A4 to the 5,12-dihydroxyeicosatetraenoic acid leukotriene B4 was localized in the cytosolic fraction and exhibited an optimum activity at pH 7.8 and an apparent Km for leukotriene A4 between 2 X 10(-5) and 3 X 10(-5) M. The purified leukotriene A4 hydrolase was shown to have a molecular weight of 68 000 on sodium dodecylsulfate polyacrylamide gel electrophoresis and of 50 000 by gel filtration. The molecular weight and monomeric native form of this enzyme are unique characteristics which distinguish leukotriene A4 hydrolase from previously purified epoxide hydrolases.  相似文献   

17.
Substituted ureas with a carboxylic acid ester as a secondary pharmacophore are potent soluble epoxide hydrolase (sEH) inhibitors. Although the ester substituent imparts better physical properties, such compounds are quickly metabolized to the corresponding less potent acids. Toward producing biologically active ester compounds, a series of esters were prepared and evaluated for potency on the human enzyme, stability in human liver microsomes, and physical properties. Modifications around the ester function enhanced in vitro metabolic stability of the ester inhibitors up to 32-fold without a decrease in inhibition potency. Further, several compounds had improved physical properties.  相似文献   

18.
Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril   总被引:3,自引:0,他引:3  
Captopril ((2S)-1-(3-mercapto-2-methyl-propionyl)-L-proline) inhibited the bifunctional, Zn(2+)-containing enzyme leukotriene A4 hydrolase/aminopeptidase reversibly and competitively with Ki = 6.0 microM for leukotriene B4 formation and Ki = 60 nM for L-lysine-p-nitroanilide hydrolysis at pH 8. Inhibition was independent of pH between pH 7 and 8, the optimum range for each catalytic activity. Half-maximal inhibition of leukotriene B4 formation by intact erythrocytes and neutrophils required 50 and 88 microM captopril, respectively. In neutrophils and platelets neither 5(S)-hydroxyeicosatetraenoic acid, 12(S)-hydroxyeicosatetraenoic acid, nor leukotriene C4 formation were reduced, indicating selective inhibition of leukotriene A4 hydrolase/aminopeptidase, not 5-lipoxygenase, 12-lipoxygenase, or leukotriene C4 synthase. In whole blood, captopril inhibited leukotriene B4 formation with an accompanying redistribution of substrate toward formation of cysteinyl leukotrienes. The decrease in leukotriene B4 was more substantial than the corresponding increase in cysteinyl leukotrienes suggesting that nonenzymatic hydration predominates over transcellular metabolism of leukotriene A4 by platelets during selective inhibition of leukotriene A4 hydrolase. Enalapril dicarboxylic acid and Glu-Trp-Pro-Arg-ProGln-Ile-Pro-Pro which inhibit angiotensin-converting enzyme: angiotensin I, bradykinin, and N-[3-(2-furyl)acryloyl]Phe-Gly-Gly which are substrates; and chloride ions which activate angiotensin-converting enzyme did not modulate leukotriene A4 hydrolase/aminopeptidase activity. The results indicate that: (i) the sulfhydryl group of captopril is an important determinant for inhibition of leukotriene A4 hydrolase/aminopeptidase, probably by binding to an active site Zn2+; (ii) aminopeptidase and leukotriene A4 hydrolase display differential susceptibility to inhibition; (iii) there is minimal functional similarity between angiotensin-converting enzyme (peptidyl dipeptidase) and leukotriene A4 hydrolase/aminopeptidase; (iv) captopril may be a useful prototype to identify more potent and selective leukotriene A4 hydrolase inhibitors.  相似文献   

19.
We report herein synthesis of PKCbeta-selective inhibitors possessing the novel pharmacophore of anilino-monoindolylmaleimide. Several compounds of this series exhibited IC50's as low as 50 nM against human PKCbeta2. One of the most potent compounds, 6l, inhibited PKCbeta1 and PKCbeta2 with IC50 of 21 and 5 nM, respectively, and exhibited selectivity of more than 60-fold in favor of PKCbeta2 relative to other PKC isozymes (PKCalpha, PKCgamma, and PKCepsilon).  相似文献   

20.
Novel N9-arenethenyl purines, optimized potent dual Src/Abl tyrosine kinase inhibitors, are described. The key structural feature is a trans vinyl linkage at N9 on the purine core which projects hydrophobic substituents into the selectivity pocket at the rear of the ATP site. Their synthesis was achieved through a Horner–Wadsworth–Emmons reaction of N9-phosphorylmethylpurines and substituted benzaldehydes or Heck reactions between 9-vinyl purines and aryl halides. Most compounds are potent inhibitors of both Src and Abl kinase, and several possess good oral bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号