首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.  相似文献   

2.
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.  相似文献   

3.
IF3C is the C-terminal domain of Escherichia coli translation initiation factor 3 (IF3) and is responsible for all functions of this translation initiation factor but for its ribosomal recycling. To map the number and nature of the active sites of IF3 and to identify the essential Arg residue(s) chemically modified with 2,3-butanedione, the eight arginine residues of IF3C were substituted by Lys, His, Ser and Leu, generating 32 variants that were tested in vitro for all known IF3 activities. The IF3-30S subunit interaction was inhibited strongly by substitutions of Arg99, Arg112, Arg116, Arg147 and Arg168, the positive charges being important at positions 116 and 147. The 70S ribosome dissociation was affected by mutations of Arg112, Arg147 and, to a lesser extent, of Arg99 and Arg116. Pseudo-initiation complex dissociation was impaired by substitution of Arg99 and Arg112 (whose positive charges are important) and, to a lesser extent, of Arg116, Arg129, Arg133 and Arg147, while the dissociation of non-canonical 30S initiation complexes was preserved at wild-type levels in all 32 mutants. Stimulation of mRNA translation was reduced by mutations of Arg116, Arg129 and, to a lesser extent, of Arg99, Arg112 and Arg131 whereas inhibition of non-canonical mRNA translation was affected by substitutions of Arg99, Arg112, Arg168 and, to a lesser extent, Arg116, Arg129 and Arg131. Finally, repositioning the mRNA on the 30S subunit was affected weakly by mutations of Arg133, Arg131, Arg168, Arg147 and Arg129. Overall, the results define two active surfaces in IF3C, and indicate that the different functions of IF3 rely on different molecular mechanisms involving separate active sites.  相似文献   

4.
The 18-kDa Domain I from the N-terminal region of translation initiation factor IF2 from Escherichia coli was expressed, purified, and structurally characterized using multidimensional NMR methods. Residues 2-50 were found to form a compact subdomain containing three short beta-strands and three alpha-helices, folded to form a betaalphaalphabetabetaalpha motif with the three helices packed on the same side of a small twisted beta-sheet. The hydrophobic amino acids in the core of the subdomain are conserved in a wide range of species, indicating that a similarly structured motif is present at the N terminus of IF2 in many of the bacteria. External to the compact 50-amino acid subdomain, residues 51-97 are less conserved and do not appear to form a regular structure, whereas residues 98-157 form a helix containing a repetitive sequence of mostly hydrophilic amino acids. Nitrogen-15 relaxation rate measurements provide evidence that the first 50 residues form a well ordered subdomain, whereas other regions of Domain I are significantly more mobile. The compact subdomain at the N terminus of IF2 shows structural homology to the tRNA anticodon stem contact fold domains of the methionyl-tRNA and glutaminyl-tRNA synthetases, and a similar fold is also found in the B5 domain of the phenylalanine-tRNA synthetase. The results of the present work will provide guidance for the design of future experiments directed toward understanding the functional roles of this widely conserved structural domain within IF2.  相似文献   

5.
Three protein factors ensure rapid and accurate initiation of translation in bacteria. Translation initiation factor IF2 is a ribosome-dependent GTPase, which is important for correct positioning of initiator tRNA on the 30S subunit as well as ribosomal subunit joining. The solution structure of the free C-terminal part of IF2 (IF2C, comprising domains IV to VI-2) was previously determined by small-angle X-ray scattering (SAXS) [Rasmussen, L. C., et al. (2008) Biochemistry 47, 5590-5598]. In this study, adding GDP or nonhydrolyzable GTP analogue GDPNP to the protein in solution caused structural changes in the protein, in agreement with recent data determined via isothermal titration calorimetry [Hauryliuk, V., et al. (2009) J. Mol. Biol. 394, 621-626]. The p(r) function indicated an elongated conformation supported by radii of gyration of 40.1 and 44.9 ? and maximum dimensions of ~125 and ~150 ? for IF2C with GDPNP and GDP, respectively. The SAXS data were used to model the structure of IF2C bound to either GDPNP or GDP. The structural transitions of IF2C upon GDPNP binding and following nucleotide hydrolysis support the concept of cofactor-dependent conformational switching rather than the classical model for GTPase activity.  相似文献   

6.
7.
Elongation factor G(EF-G) and initiation factor 2 (IF2) are involved in the translocation of ribosomes on mRNA and in the binding of initiator tRNA to the 30 S ribosomal subunit, respectively. Here we report that the Escherichia coli EF-G and IF2 interact with unfolded and denatured proteins, as do molecular chaperones that are involved in protein folding and protein renaturation after stress. EF-G and IF2 promote the functional folding of citrate synthase and alpha-glucosidase after urea denaturation. They prevent the aggregation of citrate synthase under heat shock conditions, and they form stable complexes with unfolded proteins such as reduced carboxymethyl alpha-lactalbumin. Furthermore, the EF-G and IF2-dependent renaturations of citrate synthase are stimulated by GTP, and the GTPase activity of EF-G and IF2 is stimulated by the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. The concentrations at which these chaperone-like functions occur are lower than the cellular concentrations of EF-G and IF2. These results suggest that EF-G and IF2, in addition to their role in translation, might be implicated in protein folding and protection from stress.  相似文献   

8.
Translation initiation factor IF1 is an indispensable protein for translation in prokaryotes. No clear function has been assigned to this factor so far. In this study we demonstrate an RNA chaperone activity of this protein both in vivo and in vitro. The chaperone assays are based on in vivo or in vitro splicing of the group I intron in the thymidylate synthase gene (td) from phage T4 and an in vitro RNA annealing assay. IF1 wild-type and mutant variants with single amino acid substitutions have been analyzed for RNA chaperone activity. Some of the IF1 mutant variants are more active as RNA chaperones than the wild-type. Furthermore, both wild-type IF1 and mutant variants bind with high affinity to RNA in a band-shift assay. It is suggested that the RNA chaperone activity of IF1 contributes to RNA rearrangements during the early phase of translation initiation.  相似文献   

9.
We isolated and characterized a cDNA for the N-terminal half of the eukaryotic initiation of translation factor 2 (cIF2) during a screen of chicken osteoblast cDNAs. The apparent size of the message for this protein, approximately 5.6 kb, is slightly larger in size than that for human IF2 (hIF2). There is a high degree of sequence similarity between the human and chicken N-terminal portions of the protein that extends to the encoding nucleotide sequence. The tissue specific expression pattern for cIF2 and hIF2 are similar, being moderately abundant in brain, liver, and skeletal muscle, and detectable in kidney, chondrocytes, and freshly isolated osteoblasts. The ratio of message for cIF2 to that of beta-actin was 0.10 and 0.18 for liver and brain. Message levels peak in osteoblasts between 8 and 12 days of culture, coinciding with high levels of matrix protein synthesis. At peak expression, the ratio of cIF2:beta-actin for 8 day osteoblasts was 0.76. Treatment of osteoblast cultures with cycloheximide markedly reduces the level of cIF2 message indicating that novel protein synthesis is required for its expression. Hybridization of RNA samples from either chicken osteoblasts or a human osteoblast cell line with a probe for a subunit of human eukaryotic initiation of translation factor 2 (eIF2alpha), the housekeeping initiation factor, indicates that levels of eIF2 remain low. With hIF2, cIF2 represents the only other vertebrate homolog of IF2 for which a major portion of the coding sequence has been identified. This is the first report of regulated expression for a eukaryotic IF2 and is the first demonstration of its abundance in osteoblasts.  相似文献   

10.
Initiation of translation in prokaryotes requires the participation of at least three soluble proteins: the initiation factors IF1, IF2 and IF3. Initiation factor 2, which is one of the largest proteins involved in translation (97.3 kDa) has been shown to stimulate in vitro the binding of fMet-tRNA(fMet) to the 30S ribosomal subunit. After formation of 70S translation initiation complex, IF2 is believed to participate in GTP hydrolysis, thereby promoting its own release. Here we review evidence which indicates the functional importance of the different structural domains of IF2, emphasizing new information obtained by in vivo experiments.  相似文献   

11.
Bacterial translation initiation factor IF2 is a multidomain protein that is an essential component of a system for ensuring that protein synthesis begins at the correct codon within a messenger RNA. Full-length IF2 from Escherichia coli and seven fragments of the protein were expressed, purified, and characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) methods. Interestingly, resonances of the 6 kD IF2N domain located at the extreme N terminus of IF2 can be clearly identified within the NMR spectra of the full-length 97-kD protein. (15)N NMR relaxation rate data indicate that (1) the IF2N domain is internally well ordered and tumbles in solution in a manner that is independent of the other domains of the IF2 protein, and (2) the IF2N domain is connected to the C-terminal regions of IF2 by a flexible linker. Chemical shifts of resonances within the isolated IF2N domain do not significantly differ from those of the corresponding residues within the context of the full-length 97-kD protein, indicating that IF2N is a structurally independent unit that does not strongly interact with other regions of IF2. CD and NMR data together provide evidence that Domains I-III of IF2 have unstructured and flexible regions as well as substantial helical content; CD data indicate that the helical content of these regions decreases significantly at temperatures above 35 degrees C. The features of structurally well-ordered N- and C-terminal domains connected by a flexible linker with significant helical content are reminiscent of another translation initiation factor, IF3.  相似文献   

12.
In the absence of ribosomes, Bacillus stearothermophilus translation initiation factor IF2 (Mr = 82 kDa) and its GTP-binding domain (i.e. the G-domain, Mr = 41 kDa) promote barely detectable hydrolysis of GTP. Upon addition of some aliphatic alcohols, however, the rate of nucleotide cleavage is substantially increased with both IF2 and G-domain, the highest stimulation being observed with 20% (v/v) ethanol. Under these conditions, the rates of ribosome-independent GTP hydrolysis with both IF2 and G-domain are approximately 30-fold lower than the corresponding rates obtained in the presence of ribosomes, while the Km for GTP is approximately the same in all cases. These results indicate that, as with the other two prokaryotic G proteins involved in translation (i.e. elongation factors EF-Tu and EF-G), also in the case of IF2, the GTPase catalytic center resides in the factor and, more specifically, in its G-domain.  相似文献   

13.
14.
Protein biosynthesis in bacteria is controlled by a number of translation factors. Recent data based on comparison of sequence and structure data of translation factors have established a novel hypothesis for their interaction with the ribosome: initiation, elongation, and termination factors may use a common or partly overlapping binding site on the ribosome in a process of macromolecular mimicry of an A-site-bound tRNA. This paper reviews structural knowledge and tRNA macromolecular mimicry involvement of translation initiation factor IF2. Furthermore, a model is proposed for the factor and its interaction with the ribosome during the formation of the translation initiation complex.  相似文献   

15.
During the IF2-catalysed formation of the 30S initiation complex, the GTP requirement and Its subsequent hydrolysis during 70S complex formation are considered to be essential for translation initiation in Escherichia coli. In order to clarify the role of certain amino acid residues believed to be crucial for the GTP hydrolytic activity of E. coli IF2, we have introduced seven single amino acid substitutions into its GTP-binding site (Gly for Val-400; Thr for Pro-446; Gly, Glu, Gin for His-448; and Asn, Glu for Asp-501). These mutated IF2 proteins were expressed in vivo in physiological quantities and tested for their ability to maintain the growth of an E. coli strain from which the functional chromosomal copy of the infB gene has been deleted. Only one of the mutated proteins (Asp-501 to Giu) was able to sustain cell viability and several displayed a dominant negative effect. These results emphasize that the amino acid residues we substituted are essential for the iF2 functions and demonstrate the importance of GTP hydrolysis in translation initiation. These findings are discussed in relation to a previously proposed theoretical model for the IF2 G-domain.  相似文献   

16.
IF2 is one of three bacterial translation initiation factors that are conserved through all kingdoms of life. It binds the 30S and 50S ribosomal subunits, as well as fMet-tRNAf(Met). After these interactions, fMet-tRNAf(Met) is oriented to the ribosomal P-site where the first amino acid of the nascent polypeptide, formylmethionine, is presented. The C-terminal domain of Bacillus stearothermophilus IF2, which is responsible for recognition and binding of fMet-tRNAf(Met), contains two structured modules. Previously, the solution structure of the most C-terminal module, IF2-C2, has been elucidated by NMR spectroscopy and direct interactions between this subdomain and fMet-tRNAf(Met) were reported. In the present NMR study we have obtained the spectral assignment of the other module of the C-terminal domain (IF2-C1) and determined its solution structure and backbone dynamics. The IF2-C1 core forms a flattened fold consisting of a central four-stranded parallel beta-sheet flanked by three alpha-helices. Although its overall organization resembles that of subdomain III of the archaeal IF2-homolog eIF5B whose crystal structure had previously been reported, some differences of potential functional significance are evident.  相似文献   

17.
Initiation of protein synthesis in bacteria involves the combined action of three translation initiation factors, including translation initiation factor IF2. Structural knowledge of this bacterial protein is scarce. A fragment consisting of the four C-terminal domains of IF2 from Escherichia coli was expressed, purified, and characterized by small-angle X-ray scattering (SAXS), and from the SAXS data, a radius of gyration of 43 +/- 1 A and a maximum dimension of approximately 145 A were obtained for the molecule. Furthermore, the SAXS data revealed that E. coli IF2 in solution adopts a structure that is significantly different from the crystal structure of orthologous aIF5B from Methanobacterium thermoautotrophicum. This crystal structure constitutes the only atomic resolution structural knowledge of the full-length factor. Computer programs were applied to the SAXS data to provide an initial structural model for IF2 in solution. The low-resolution nature of SAXS prevents the elucidation of a complete and detailed structure, but the resulting model for C-terminal E. coli IF2 indicates important structural differences between the aIF5B crystal structure and IF2 in solution. The chalice-like structure with a highly exposed alpha-helical stretch observed for the aIF5B crystal structure was not found in the structural model of IF2 in solution, in which domain VI-2 is moved closer to the rest of the protein.  相似文献   

18.
By means of limited proteolysis of Bacillus stearothermophilus initiation factor IF2 and genetic manipulation of its structural gene, infB, we have been able to produce (or hyperproduce) and purify two polypeptide fragments corresponding to two structurally and functionally separate domains of the protein. The first is the G-domain (approximately 41 kDa), which makes up the central part of the molecule and contains the conserved structural elements found in all GTP/GDP-binding sites of G-proteins. This domain is resistant to proteolysis in the presence of GTP or GDP, retains the capacity to interact with the 50 S subunit, binds weakly to the 30 S subunit, and displays ribosome-dependent GTPase activity with an approximately 2-fold higher Km for GTP and the same Vmax as compared with intact IF2. The second is the C-domain (approximately 24 kDa), which corresponds to the COOH-terminal part of IF2 and constitutes an extraordinarily compact domain containing the fMet-tRNA binding site of IF2. In spite of its negligible affinity for the ribosomes, the C-domain weakly stimulates the ribosomal binding of fMet-tRNA, presumably by affecting the conformation of the initiator tRNA molecule.  相似文献   

19.
Bacterial translation initiation factor IF2 was localized on the ribosome by rRNA cleavage using free Cu(II):1,10-orthophenanthroline. The results indicated proximity of IF2 to helix 89, to the sarcin-ricin loop and to helices 43 and 44, which constitute the "L11/thiostrepton" stem-loops of 23S rRNA. These findings prompted an investigation of the L11 contribution to IF2 activity and a re-examination of the controversial issue of the effect on IF2 functions of thiostrepton, a peptide antibiotic known primarily as a powerful inhibitor of translocation. Ribosomes lacking L11 were found to have wild-type capacity to bind IF2 but a strongly reduced ability to elicit its GTPase activity. We found that thiostrepton caused a faster recycling of this factor on and off the 70S ribosomes and 50S subunits, which in turn resulted in an increased rate of the multiple turnover IF2-dependent GTPase. Although thiostrepton did not inhibit the P-site binding of fMet-tRNA, the A-site binding of the EF-Tu-GTP-Phe-tRNA or the activity of the ribosomal peptidyl transferase center (as measured by the formation of fMet-puromycin), it severely inhibited IF2-dependent initiation dipeptide formation. This inhibition can probably be traced back to a thiostrepton-induced distortion of the ribosomal-binding site of IF2, which leads to a non-productive interaction between the ribosome and the aminoacyl-tRNA substrates of the peptidyl transferase reaction. Overall, our data indicate that the translation initiation function of IF2 is as sensitive as the translocation function of EF-G to thiostrepton inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号