首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C-C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C-C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD(+)-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ~59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (~105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg(2+), and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na(+)-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold for FAD binding could be localized at the C-terminal end and central region of CDH, respectively. A first mechanism for the ring cleavage of CDO is presented, and it is suggested that the FAD cofactor in CDH is an evolutionary relict.  相似文献   

2.
A bacterium, strain 22Lin, was isolated on cyclohexane-1,2-diol as sole electron donor and carbon source and nitrate as electron acceptor. Cells are motile rods and are facultatively anaerobic. A phylogenetic comparison based on the total 16S rRNA gene sequence allowed the assignment of the isolate to the genus Azoarcus. Cyclohexanol, cyclohexanone, cyclohexane-1,3-diol, and cyclohexane-1,3-dione, which are oxidized by a different denitrifying strain, did not support denitrifying growth of isolate 22Lin. On the contrary, cyclohexanol (I50 = 37 μM) and cyclohexanone (I50 = 28 μM) inhibited growth on cyclohexane-1,2-diol, but not on acetate. NAD was reduced by crude extracts of strain 22Lin in the presence of cyclohexane-1,2-dione, but not in the presence of cyclohexanone or cyclohexane-1,3-dione. The formation of 6-oxohexanoate from cyclohexane-1,2-dione and of adipate during NAD reduction suggests that strain 22Lin possesses a carbon–carbon hydrolase that transforms cyclohexane-1,2-dione into 6-oxohexanoate. This pathway was once observed in an aerobic pseudomonad that was lost and could not be reisolated. Here, the application of strictly anoxic enrichment conditions enabled the reisolation of another strain (22Lin) that uses this pathway. Received: 3 February 1997 / Accepted: 12 May 1997  相似文献   

3.
The FucO protein, a member of the group III "iron-activated" dehydrogenases, catalyzes the interconversion between L-lactaldehyde and L-1,2-propanediol in Escherichia coli. The three-dimensional structure of FucO in a complex with NAD(+) was solved, and the presence of iron in the crystals was confirmed by X-ray fluorescence. The FucO structure presented here is the first structure for a member of the group III bacterial dehydrogenases shown experimentally to contain iron. FucO forms a dimer, in which each monomer folds into an alpha/beta dinucleotide-binding N-terminal domain and an all-alpha-helix C-terminal domain that are separated by a deep cleft. The dimer is formed by the swapping (between monomers) of the first chain of the beta-sheet. The binding site for Fe(2+) is located at the face of the cleft formed by the C-terminal domain, where the metal ion is tetrahedrally coordinated by three histidine residues (His200, His263, and His277) and an aspartate residue (Asp196). The glycine-rich turn formed by residues 96 to 98 and the following alpha-helix is part of the NAD(+) recognition locus common in dehydrogenases. Site-directed mutagenesis and enzyme kinetic assays were performed to assess the role of different residues in metal, cofactor, and substrate binding. In contrast to previous assumptions, the essential His267 residue does not interact with the metal ion. Asp39 appears to be the key residue for discriminating against NADP(+). Modeling L-1,2-propanediol in the active center resulted in a close approach of the C-1 hydroxyl of the substrate to C-4 of the nicotinamide ring, implying that there is a typical metal-dependent dehydrogenation catalytic mechanism.  相似文献   

4.
Certain pathogenic trypanosomatids are highly dependent on glycolysis for ATP production, and hence their glycolytic enzymes, including glycerol-3-phosphate dehydrogenase (GPDH), are considered attractive drug targets. The ternary complex structure of Leishmania mexicana GPDH (LmGPDH) with dihydroxyacetone phosphate (DHAP) and NAD(+) was determined to 1.9A resolution as a further step towards understanding this enzyme's mode of action. When compared with the apo and binary complex structures, the ternary complex structure shows an 11 degrees hinge-bending motion of the C-terminal domain with respect to the N-terminal domain. In addition, residues in the C-terminal domain involved in catalysis or substrates binding show significant movements and a previously invisible five-residue loop region becomes well ordered and participates in NAD(+) binding. Unexpectedly, DHAP and NAD(+) appear to form a covalent bond, producing an adduct in the active site of LmGPDH. Modeling a ternary complex glycerol 3-phosphate (G3P) and NAD(+) with LmGPDH identified ten active site residues that are highly conserved among all GPDHs. Two lysine residues, Lys125 and Lys210, that are presumed to be critical in catalysis, were mutated resulting in greatly reduced catalytic activity. Comparison with other structurally related enzymes found by the program DALI suggested Lys210 as a key catalytic residue, which is located on a structurally conserved alpha-helix. From the results of site-directed mutagenesis, molecular modeling and comparison with related dehydrogenases, a catalytic mechanism of LmGPDH and a possible evolutionary scenario of this group of dehydrogenases are proposed.  相似文献   

5.
Alicyclic alcohols are naturally occurring compounds which can be degraded by microorganisms via cleavage of the ring C–C bond. Denitrifying Azoarcus sp. strain 22Lin grows on cyclohexane-1,2-diol which serves as electron donor and carbon source. The diol is converted to cyclohexane-1,2-dione followed by hydrolysis to the corresponding semialdehyde and oxidation to adipate. The latter two reactions are catalyzed by the thiamine diphosphate-dependent flavoenzyme cyclohexane-1,2-dione hydrolase, the first α-ketolase known so far. Biochemical and structural properties of this new member of the thiamine diphosphate enzyme family will be presented.  相似文献   

6.
We report here that alterations of either His291-alpha or His146-beta' in the active site of human branched-chain alpha-ketoacid dehydrogenase (E1b) impede both the decarboxylation and the reductive acylation reactions catalyzed by E1b as well as the binding of cofactor thiamin diphosphate (ThDP). In a refined human E1b active-site structure, His291-alpha, which aligns with His407 in Escherichia coli pyruvate dehydrogenase and His263 in yeast transketolase, is on a largely ordered phosphorylation loop. The imidazole ring of His291-alpha in E1b coordinates to the terminal phosphate oxygen atoms of bound ThDP. The N3 atom of wild-type His146-beta', which can be protonated, binds a water molecule and points toward the aminopyrimidine ring of ThDP. Remarkably, the H291A-alpha mutation results in a complete order-to-disorder transition of the loop region, which precludes the binding of the substrate lipoyl-bearing domain to E1b. The H146A-beta' mutation, on the other hand, does not alter the loop structure, but nullifies the reductive acylation activity of E1b. Our results suggest that: 1) His291-alpha plays a structural rather than a catalytic role in the binding of cofactor ThDP and the lipoyl-bearing domain to E1b, and 2) His146-beta' is an essential catalytic residue, probably functioning as a proton donor in the reductive acylation of lipoamide on the lipoyl-bearing domain.  相似文献   

7.
Bacterial UDP-glucose dehydrogenase (UDPGlcDH) is essential for formation of the antiphagocytic capsule that protects many virulent bacteria such as Streptococcus pyogenes andStreptococcus pneumoniae type 3 from the host's immune system. We have determined the X-ray structures of both native and Cys260Ser UDPGlcDH from S. pyogenes (74% similarity to S. pneumoniae) in ternary complexes with UDP-xylose/NAD(+) and UDP-glucuronic acid/NAD(H), respectively. The 402 residue homodimeric UDPGlcDH is composed of an N-terminal NAD(+) dinucleotide binding domain and a C-terminal UDP-sugar binding domain connected by a long (48 A) central alpha-helix. The first 290 residues of UDPGlcDH share structural homology with 6-phosphogluconate dehydrogenase, including conservation of an active site lysine and asparagine that are implicated in the enzyme mechanism. Also proposed to participate in the catalytic mechanism are a threonine and a glutamate that hydrogen bond to a conserved active site water molecule suitably positioned for general acid/base catalysis.  相似文献   

8.
Properties of recombinant wild type (WT) and six-histidine tag-fused (His(6)) putidaredoxin reductase (Pdr), a FAD-containing component of the soluble cytochrome P450cam monooxygenase system from Pseudomonas putida, have been studied. Both WT and His(6) Pdr were found to undergo a monomer-dimer association-dissociation and were partially present as an NAD(+)-bound form. Although molecular, spectral, and electron transferring properties of recombinant His(6) Pdr to artificial and native electron acceptors were similar to those of the WT protein, the presence of eight additional C-terminal amino acid residues, Pro-Arg-His-His-His-His-His-His, had a crucial effect on the enzyme interaction with oxidized pyridine nucleotide. Under anaerobic conditions, NAD(+) induced in His(6) Pdr spectral changes indicative of flavin reduction and formation of the charge transfer complex between the reduced FAD and NAD(+). The reaction proceeded considerably faster in the presence of free histidine and thiol-reducing agents, such as dithiothreitol and reduced glutathione. In the presence of any of these three reagents, NAD(+) was capable of inducing reduction of the flavin in WT Pdr. Free thiol groups were identified as an internal source of electrons in the enzyme. The results showed that WT and His(6) Pdr were able to function as NAD(H)-dependent dithiol/disulfide oxidoreductases catalyzing both forward and reverse reactions, NAD(+)-dependent oxidation of thiols, and NADH-dependent reduction of disulfides. This function of the flavoprotein can be dissociated from electron transfer to putidaredoxin. Similarity of Pdr to the enzymes of the glutathione reductase family is discussed.  相似文献   

9.
N-terminal or C-terminal arms that extend from folded protein domains can play a critical role in quaternary structure and other intermolecular associations and/or in controlling biological activity. We have tested the role of an extended N-terminal arm in the structure and function of a periplasmic enzyme glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis. We have determined the crystal structure of the NAD(+) complex of a truncated form of the enzyme, GFORDelta, in which the first 22 residues of the N-terminal arm of the mature protein have been deleted. The structure, refined at 2.7 A resolution (R(cryst)=24.1%, R(free)=28.4%), shows that the truncated form of the enzyme forms a dimer and implies that the N-terminal arm is essential for tetramer formation by wild-type GFOR. Truncation of the N-terminal arm also greatly increases the solvent exposure of the cofactor; since GFOR activity is dependent on retention of the cofactor during the catalytic cycle we conclude that the absence of GFOR activity in this mutant results from dissociation of the cofactor. The N-terminal arm thus determines the quaternary structure and the retention of the cofactor for GFOR activity and during translocation into the periplasm. The structure of GFORDelta also shows how an additional mutation, Ser64Asp, converts the strict NADP(+) specificity of wild-type GFOR to a dual NADP(+)/NAD(+) specificity.  相似文献   

10.
11.
Sirtuin is a member of NAD(+)-dependent deacetylase family. The structural details of Sirtuin 2 (SIRT2) complex will be very useful to discover the drug which might have beneficial effects on various diseases like cancer, diabetes, etc. Unfortunately, SIRT2 complex structure is not available yet, hence molecular docking was carried out to dock the substrate (NAD(+) and acetylated lysine) and inhibitor (sirtinol) in the NAD(+) binding site. The suitable binding orientation of substrate and inhibitor in the SIRT2 active site was selected and subjected to 5 ns molecular dynamics simulations to adjust the binding orientation of inhibitor and substrate as well as to identify the conformational changes in the active site. The result provides an insight about 3D SIRT2 structural details as well as the importance of F96 in deacetylation function. In addition, our simulations revealed the displacement of F96 upon substrate and inhibitor binding, inducing an extended conformation of loop3 and changing its interactions with the rest of SIRT2. We believe that our study could be helpful to gain a structural insight of SIRT2 and to design the receptor-based inhibitors.  相似文献   

12.
NAD(+)-dependent DNA ligases are present in all bacteria and are essential for growth. Their unique substrate specificity compared with ATP-dependent human DNA ligases recommends the NAD(+) ligases as targets for the development of new broad-spectrum antibiotics. A plausible strategy for drug discovery is to identify the structural components of bacterial DNA ligase that interact with NAD(+) and then to isolate small molecules that recognize these components and thereby block the binding of NAD(+) to the ligase. The limitation to this strategy is that the structural determinants of NAD(+) specificity are not known. Here we show that reactivity of Escherichia coli DNA ligase (LigA) with NAD(+) requires N-terminal domain Ia, which is unique to, and conserved among, NAD(+) ligases but absent from ATP-dependent ligases. Deletion of domain Ia abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate but had no effect on phosphodiester formation at a preadenylated nick. Alanine substitutions at conserved residues within domain Ia either reduced (His-23, Tyr-35) or abolished (Tyr-22, Asp-32, Asp-36) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of pre-formed DNA-adenylate. We suggest that these five side chains comprise a binding site for the nicotinamide mononucleotide moiety of NAD(+). Structure-activity relationships were clarified by conservative substitutions.  相似文献   

13.
Lie MA  Celik L  Jørgensen KA  Schiøtt B 《Biochemistry》2005,44(45):14792-14806
We have performed long-term molecular dynamics simulations of pyruvate decarboxylase from Zymomonas mobilis. Nine structures were modeled to investigate mechanistic questions related to binding of the cofactor, thiamin diphosphate (ThDP), and the substrate in the active site. The simulations reveal that the proposed three ThDP-tautomers all can bind in the active site and indicate that the equilibrium is shifted toward 4'-aminopyrimidine ThDP in the absence of substrate. 4'-Aminopyrimidinium ThDP is found to be a likely intermediate in the equilibrium. Mutations of important active site residues, Glu473Ala and Glu50Ala, were modeled to further elucidate their catalytic role. Formation of the catalytic important ylide by deprotonation of ThDP(C2) is investigated. Only the less favored tautomer, 1',4'-iminopyrimidine ThDP (imino-ThDP), could be deprotonated. The two other tautomers of ThDP could not be activated at the C2-position, thus, explaining the mechanistic importance of the less stable imino-ThDP. Finally, binding of pyruvate in the active site with the cofactor modeled as the nucleophilic ylide (ylide-ThDP) is studied. The carbonyl group of the substrate forms a hydrogen bond to Tyr290(OH). No hydrogen bond could be identified between ThDP(N4') and the substrate. The geometry of the substrate binding is well-suited for a nucleophilic attack by ylide-ThDP(C2). We propose that a proton relay from His113 via Asp27 and Tyr290 to the carbonyl oxygen atom of the substrate may be involved in the mechanism.  相似文献   

14.
Heterotetrameric (alphabetagammadelta) sarcosine oxidase from Corynebacterium sp. P-1 (cTSOX) contains noncovalently bound FAD and NAD(+) and covalently bound FMN, attached to beta(His173). The beta(His173Asn) mutant is expressed as a catalytically inactive, labile heterotetramer. The beta and delta subunits are lost during mutant enzyme purification, which yields a stable alphagamma complex. Addition of stabilizing agents prevents loss of the delta but not the beta subunit. The covalent flavin link is clearly a critical structural element and essential for TSOX activity or preventing FMN loss. The alpha subunit was expressed by itself and purified by affinity chromatography. The alpha and beta subunits each contain an NH(2)-terminal ADP-binding motif that could serve as part of the binding site for NAD(+) or FAD. The alpha subunit and the alphagamma complex were each found to contain 1 mol of NAD(+) but no FAD. Since NAD(+) binds to alpha, FAD probably binds to beta. The latter could not be directly demonstrated since it was not possible to express beta by itself. However, FAD in TSOX from Pseudomonas maltophilia (pTSOX) exhibits properties similar to those observed for the covalently bound FAD in monomeric sarcosine oxidase and N-methyltryptophan oxidase, enzymes that exhibit sequence homology with beta. A highly conserved glycine in the ADP-binding motif of the alpha(Gly139) or beta(Gly30) subunit was mutated in an attempt to generate NAD(+)- or FAD-free cTSOX, respectively. The alpha(Gly139Ala) mutant is expressed only at low temperature (t(optimum) = 15 degrees C), but the purified enzyme exhibited properties indistinguishable from the wild-type enzyme. The much larger barrier to NAD(+) binding in the case of the alpha(Gly139Val) mutant could not be overcome even by growth at 3 degrees C, suggesting that NAD(+) binding is required for TSOX expression. The beta(Gly30Ala) mutant exhibited subunit expression levels similar to those of the wild-type enzyme, but the mutation blocked subunit assembly and covalent attachment of FMN, suggesting that both processes require a conformational change in beta that is induced upon FAD binding. About half of the covalent FMN in recombinant preparations of cTSOX or pTSOX is present as a reversible covalent 4a-adduct with a cysteine residue. Adduct formation is not prevented by mutating any of the three cysteine residues in the beta subunit of cTSOX to Ser or Ala. Since FMN is attached via its 8-methyl group to the beta subunit, the FMN ring must be located at the interface between beta and another subunit that contains the reactive cysteine residue.  相似文献   

15.
Subunit KtrA of the bacterial Na(+)-dependent K(+)-translocating KtrAB systems belongs to the KTN/RCK family of regulatory proteins and protein domains. They are located at the cytoplasmic side of the cell membrane. By binding ligands they regulate the activity of a number of K(+) transporters and K(+) channels. To investigate the function of KtrA from the bacterium Vibrio alginolyticus (VaKtrA), the protein was overproduced in His-tagged form (His(10)-VaKtrA) and isolated by affinity chromatography. VaKtrA contains a G-rich, ADP-moiety binding beta-alpha-beta-fold ("Rossman fold"). Photocross-linking and flow dialysis were used to determine the binding of [(32)P]ATP and [(32)P]NAD(+) to His(10)-VaKtrA. Binding of other nucleotides was estimated from the competition by these compounds of the binding of the (32)P-labeled nucleotides to the protein. [gamma-(32)P]ATP bound with high affinity to His(10)-VaKtrA (K(D) of 9 microm). All other nucleotides tested exhibited K(D) (K(i)) values of 30 microm or higher. Limited proteolysis with trypsin showed that ATP was the only nucleotide that changed the conformation of VaKtrA. ATP specifically promoted complex formation of VaKtrA with the His-tagged form of its K(+)-translocating partner, VaKtrB-His(6), as detected both in an overlay experiment and in an experiment in which VaKtrA was added to VaKtrB-His(6) bound to Ni(2+)-agarose. In intact cells of Escherichia coli both a high of membrane potential and a high cytoplasmic ATP concentration were required for VaKtrAB activity. C-terminal deletions in VaKtrA showed that for in vivo activity at least 169 N-terminal amino acid residues of its total of 220 are required and that its 40 C-terminal residues are dispensable.  相似文献   

16.
Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of l-glutamate to α-ketoglutarate using NAD(P) as a cofactor. The bacterial enzymes are hexamers and each polypeptide consists of an N-terminal substrate-binding (Domain I) followed by a C-terminal cofactor-binding segment (Domain II). The reaction takes place at the junction of the two domains, which move as rigid bodies and are presumed to narrow the cleft during catalysis. Distinct signature sequences in the nucleotide-binding domain have been linked to NAD(+) vs. NADP(+) specificity, but they are not unambiguous predictors of cofactor preferences. Here, we have determined the crystal structure of NAD(+)-specific Peptoniphilus asaccharolyticus glutamate dehydrogenase in the apo state. The poor quality of native crystals was resolved by derivatization with selenomethionine, and the structure was solved by single-wavelength anomalous diffraction methods. The structure reveals an open catalytic cleft in the absence of substrate and cofactor. Modeling of NAD(+) in Domain II suggests that a hydrophobic pocket and polar residues contribute to nucleotide specificity. Mutagenesis and isothermal titration calorimetry studies of a critical glutamate at the P7 position of the core fingerprint confirms its role in NAD(+) binding. Finally, the cofactor binding site is compared with bacterial and mammalian enzymes to understand how the amino acid sequences and three-dimensional structures may distinguish between NAD(+) vs. NADP(+) recognition.  相似文献   

17.
The immune complex binding activity of human Clq was lost following treatment of the protein with the arginine-selective reagents cyclohexane 1,2-dione and phenylglyoxal. Both inactivations followed pseudo-first-order kinetics. The affinity of Clq for immune complexes was reduced 7-fold following cyclohexane-1,2-dione treatment, and could be substantially restored by treatment of the modified protein with hydroxylamine. Heat-aggregated IgG protected Clq against inactivation by both reagents. Incorporation of 25 molecules of [7-14C]phenylglyoxal per Clq molecule completely inactivated the protein. These data are consistent with the presence of arginyl residues in the immunoglobulin recognition sites of human Clq.  相似文献   

18.
Lung galaptin bound to lung fibroblasts with a Kd of 190 nM, and this binding could be inhibited by 20 mM-lactose. Selective modifications of the arginine residues of galaptin with cyclohexane-1,2-dione did not change its lectin activity or its binding to fibroblasts. By contrast, modification of the arginine residues of plasma fibronectin resulted in a marked diminution of protein-fibroblast binding. Selective modification of arginine residues may provide a useful probe for -Arg-Gly-Asp-Xaa cell-binding sequences of proteins.  相似文献   

19.
Gan L  Petsko GA  Hedstrom L 《Biochemistry》2002,41(44):13309-13317
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the conversion of IMP to XMP with the reduction of NAD(+), which is the rate-limiting step in the biosynthesis of guanine nucleotides. IMPDH is a promising target for chemotherapy. Microbial IMPDHs differ from mammalian enzymes in their lower affinity for inhibitors such as mycophenolic acid (MPA) and thiazole-4-carboxamide adenine dinucleotide (TAD). Part of this resistance is determined by the coupling between nicotinamide and adenosine subsites in the NAD(+) binding site that is postulated to involve an active site flap. To understand the structural basis of the drug selectivity, we solved the X-ray crystal structure of the catalytic core domain of Tritrichomonas foetus IMPDH in complex with IMP and beta-methylene-TAD at 2.2 A resolution. Unlike previous structures of this enzyme, the active site loop is ordered in this complex, and the catalytic Cys319 is 3.6 A from IMP, in the same plane as the hypoxanthine ring. The active site loop forms hydrogen bonds to the carboxamide of beta-Me-TAD which suggests that NAD(+) promotes the nucleophillic attack of Cys319 on IMP. The interactions of the adenosine end of TAD are very different from those in the human enzyme, suggesting the NAD(+) site may be an exploitable target for the design of antimicrobial drugs. In addition, a new K(+) site is observed at the subunit interface. This site is adjacent to beta-Me-TAD, consistent with the link between the K(+) activation and NAD(+). However, contrary to the coupling model, the flap does not cover the adenosine subsite and remains largely disordered.  相似文献   

20.
Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号