共查询到20条相似文献,搜索用时 15 毫秒
1.
Steinbach AK Fraas S Harder J Tabbert A Brinkmann H Meyer A Ermler U Kroneck PM 《Journal of bacteriology》2011,193(23):6760-6769
Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C-C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C-C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD(+)-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ~59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (~105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg(2+), and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na(+)-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold for FAD binding could be localized at the C-terminal end and central region of CDH, respectively. A first mechanism for the ring cleavage of CDO is presented, and it is suggested that the FAD cofactor in CDH is an evolutionary relict. 相似文献
2.
Mizuno M Koide A Yamamura A Akeboshi H Yoshida H Kamitori S Sakano Y Nishikawa A Tonozuka T 《Journal of molecular biology》2008,376(1):210-220
An isopullulanase (IPU) from Aspergillus niger ATCC9642 hydrolyzes α-1,4-glucosidic linkages of pullulan to produce isopanose. Although IPU does not hydrolyze dextran, it is classified into glycoside hydrolase family 49 (GH49), major members of which are dextran-hydrolyzing enzymes. IPU is highly glycosylated, making it difficult to obtain its crystal. We used endoglycosidase Hf to cleave the N-linked oligosaccharides of IPU, and we here determined the unliganded and isopanose-complexed forms of IPU, both solved at 1.7-Å resolution. IPU is composed of domains N and C joined by a short linker, with electron density maps for 11 or 12 N-acetylglucosamine residues per molecule. Domain N consists of 13 β-strands and forms a β-sandwich. Domain C, where the active site is located, forms a right-handed β-helix, and the lengths of the pitches of each coil of the β-helix are similar to those of GH49 dextranase and GH28 polygalacturonase. The entire structure of IPU resembles that of a GH49 enzyme, Penicillium minioluteum dextranase (Dex49A), despite a difference in substrate specificity. Compared with the active sites of IPU and Dex49A, the amino acid residues participating in subsites + 2 and + 3 are not conserved, and the glucose residues of isopanose bound to IPU completely differ in orientation from the corresponding glucose residues of isomaltose bound to Dex49A. The shape of the catalytic cleft characterized by the seventh coil of the β-helix and a loop from domain N appears to be critical in determining the specificity of IPU for pullulan. 相似文献
3.
Crystal structure of a phospholipase D family member 总被引:7,自引:0,他引:7
The first crystal structure of a phospholipase D (PLD) family member has been determined at 2.0 A resolution. The PLD superfamily is defined by a common sequence motif, HxK(x)4D(x)6GSxN, and includes enzymes involved in signal transduction, lipid biosynthesis, endonucleases and open reading frames in pathogenic viruses and bacteria. The crystal structure suggests that residues from two sequence motifs form a single active site. A histidine residue from one motif acts as a nucleophile in the catalytic mechanism, forming a phosphoenzyme intermediate, whereas a histidine residue from the other motif appears to function as a general acid in the cleavage of the phosphodiester bond. The structure suggests that the conserved lysine residues are involved in phosphate binding. Large-scale genomic sequencing revealed that there are many PLD family members. Our results suggest that all of these proteins may possess a common structure and catalytic mechanism. 相似文献
4.
Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution.
下载免费PDF全文

The crystal structure of Saccharomyces cerevisiae transketolase, a thiamine diphosphate dependent enzyme, has been determined to 2.5 A resolution. The enzyme is a dimer with the active sites located at the interface between the two identical subunits. The cofactor, vitamin B1 derived thiamine diphosphate, is bound at the interface between the two subunits. The enzyme subunit is built up of three domains of the alpha/beta type. The diphosphate moiety of thiamine diphosphate is bound to the enzyme at the carboxyl end of the parallel beta-sheet of the N-terminal domain and interacts with the protein through a Ca2+ ion. The thiazolium ring interacts with residues from both subunits, whereas the pyrimidine ring is buried in a hydrophobic pocket of the enzyme, formed by the loops at the carboxyl end of the beta-sheet in the middle domain in the second subunit. The structure analysis identifies amino acids critical for cofactor binding and provides mechanistic insights into thiamine catalysis. 相似文献
5.
Grancalcin is a Ca(2+)-binding protein expressed at high level in neutrophils. It belongs to the PEF family, proteins containing five EF-hand motifs and which are known to associate with membranes in Ca(2+)-dependent manner. Prototypic members of this family are Ca(2+)-binding domains of calpain. Our recent finding that grancalcin interacts with L-plastin, a protein known to have actin bundling activity, suggests that grancalcin may play a role in regulation of adherence and migration of neutrophils. The structure of human grancalcin has been determined at 1.9 A resolution in the absence of calcium (R-factor of 0.212 and R-free of 0.249) and at 2. 5 A resolution in the presence of calcium (R-factor of 0.226 and R-free of 0.281). The molecule is predominantly alpha-helical: it contains eight alpha-helices and only two short stretches of two-stranded beta-sheets between the loops of paired EF-hands. Grancalcin forms dimers through the association of the unpaired EF5 hands in a manner similar to that observed in calpain, confirming this mode of association as a paradigm for the PEF family. Only one Ca(2+) was found per dimer under crystallization conditions that included CaCl(2). This cation binds to EF3 in one molecule, while this site in the second molecule of the dimer is unoccupied. This unoccupied site shows higher mobility. The structure determined in the presence of calcium, although does not represent a fully Ca(2+)-loaded form, suggests that calcium induces rather small conformational rearrangements. Comparison with calpain suggests further that the relatively small magnitude of conformational changes invoked by calcium alone may be a characteristic feature of the PEF family. Moreover, the largest differences are localized to the EF1, thus supporting the notion that calcium signaling occurs through this portion of the molecule and that it may involve the N-terminal Gly/Pro rich segment. Electrostatic potential distribution shows significant differences between grancalcin and calpain domain VI demonstrating their distinct character. 相似文献
6.
Yang JK Yoon HJ Ahn HJ Lee BI Pedelacq JD Liong EC Berendzen J Laivenieks M Vieille C Zeikus GJ Vocadlo DJ Withers SG Suh SW 《Journal of molecular biology》2004,335(1):155-165
1,4-beta-D-Xylan is the major component of plant cell-wall hemicelluloses. beta-D-Xylosidases are involved in the breakdown of xylans into xylose and belong to families 3, 39, 43, 52, and 54 of glycoside hydrolases. Here, we report the first crystal structure of a member of family 39 glycoside hydrolase, i.e. beta-D-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. This study also represents the first structure of any beta-xylosidase of the above five glycoside hydrolase families. Each monomer of T. saccharolyticum beta-xylosidase comprises three distinct domains; a catalytic domain of the canonical (beta/alpha)(8)-barrel fold, a beta-sandwich domain, and a small alpha-helical domain. We have determined the structure in two forms: D-xylose-bound enzyme and a covalent 2-deoxy-2-fluoro-alpha-D-xylosyl-enzyme intermediate complex, thus providing two snapshots in the reaction pathway. This study provides structural evidence for the proposed double displacement mechanism that involves a covalent intermediate. Furthermore, it reveals possible functional roles for His228 as the auxiliary acid/base and Glu323 as a key residue in substrate recognition. 相似文献
7.
Endo-xylogalacturonan hydrolase, a novel pectinolytic enzyme 总被引:2,自引:0,他引:2
van der Vlugt-Bergmans CJ Meeuwsen PJ Voragen AG van Ooyen AJ 《Applied and environmental microbiology》2000,66(1):36-41
We screened an Aspergillus tubingensis expression library constructed in the yeast Kluyveromyces lactis for xylogalacturonan-hydrolyzing activity in microwell plates by using a bicinchoninic acid assay. This assay detects reducing carbohydrate groups when they are released from a carbohydrate by enzymatic activity. Two K. lactis recombinants exhibiting xylogalacturonan-hydrolyzing activity were found among the 3,400 colonies tested. The cDNA insert of these recombinants encoded a 406-amino-acid protein, designated XghA, which was encoded by a single-copy gene, xghA. A multiple-sequence alignment revealed that XghA was similar to both polygalacturonases (PGs) and rhamnogalacturonases. A detailed examination of conserved regions in the sequences of these enzymes revealed that XghA resembled PGs more. High-performance liquid chromatography and matrix-assisted laser desorption ionization-time of flight mass spectrometry of the products of degradation of xylogalacturonan and saponified modified hairy regions of apple pectin by XghA demonstrated that this enzyme uses an endo type of mechanism. XghA activity appeared to be specific for a xylose-substituted galacturonic acid backbone. 相似文献
8.
Li MH Kwok F Chang WR Lau CK Zhang JP Lo SC Jiang T Liang DC 《The Journal of biological chemistry》2002,277(48):46385-46390
The three-dimensional structures of brain pyridoxal kinase and its complex with the nucleotide ATP have been elucidated in the dimeric form at 2.1 and 2.6 A, respectively. Results have shown that pyridoxal kinase, as an enzyme obeying random sequential kinetics in catalysis, does not possess a lid shape structure common to all kinases in the ribokinase superfamily. This finding has been shown to be in line with the condition that pyridoxal kinase binds substrates with variable sizes of chemical groups at position 4 of vitamin B(6) and its derivatives. In addition, the enzyme contains a 12-residue peptide loop in the active site for the prevention of premature hydrolysis of ATP. Conserved amino acid residues Asp(118) and Tyr(127) in the peptide loop could be moved to a position covering the nucleotide after its binding so that its chance to hydrolyze in the aqueous environment of the active site was reduced. With respect to the evolutionary trend of kinase enzymes, the existence of this loop in pyridoxal kinase could be classified as an independent category in the ribokinase superfamily according to the structural feature found and mechanism followed in catalysis. 相似文献
9.
A 31kDa cysteine protease, SPE31, was isolated from the seeds of a legume plant, Pachyrizhus erosus. The protein was purified, crystallized and the 3D structure solved using molecular replacement. The cDNA was obtained by RT PCR followed by amplification using mRNA isolated from the seeds of the legume plant as a template. Analysis of the cDNA sequence and the 3D structure indicated the protein to belong to the papain family. Detailed analysis of the structure revealed an unusual replacement of the conserved catalytic Cys with Gly. Replacement of another conserved residue Ala/Gly by a Phe sterically blocks the access of the substrate to the active site. A polyethyleneglycol molecule and a natural peptide fragment were bound to the surface of the active site. Asn159 was found to be glycosylated. The SPE31 cDNA sequence shares several features with P34, a protein found in soybeans, that is implicated in plant defense mechanisms as an elicitor receptor binding to syringolide. P34 has also been shown to interact with vegetative storage proteins and NADH-dependent hydroxypyruvate reductase. These roles suggest that SPE31 and P34 form a unique subfamily within the papain family. The crystal structure of SPE31 complexed with a natural peptide ligand reveals a unique active site architecture. In addition, the clear evidence of glycosylated Asn159 provides useful information towards understanding the functional mechanism of SPE31/P34. 相似文献
10.
11.
Ashok Kumar Nagendra Singh Rahul Yadav Ramasamy P. Kumar Sujata Sharma Ashish Arora T. P. Singh 《International Journal of Biochemistry and Molecular Biology》2012,3(1):58-69
Peptidyl-tRNA hydrolase from Mycobacterium smegmatis is a single domain 21 kDa protein involved in the hydrolysis of prematurely produced peptidyl-tRNAs to ensure the viability of cells in bacteria, thus making it a potentially important drug target. In order to aid the development of potent drugs for controlling bacterial infections, the three-dimensional structure of peptidyl-tRNA hydrolase from Mycobacterium smegmatis has been determined. The protein adopts a compact α/β globular fold with a twisted β-sheet surrounded by α-helices. The functionally important C-terminal stretch has been unambiguously modeled for the first time in the unliganded structure of peptidyl-tRNA hydrolase. The segment, Gly138 - Val150 is mobile because it lacks significant interactions with the rest of the protein molecule. This conformational flexibility is reflected through different values of distances between a reference atom Ala147 Cα of the segment Gly138 - Val150 to Gly114 Cα from another segment from opposite side of the substrate binding channel in Mycobacterium smegmatis (7.8 Ǻ), Mycobacterium tuberculosis (9.5 Ǻ) and Escherichia coli (11.8 Ǻ). Similarly, the conformation of loop Gly109 - Gly117 with respect to another loop Asp95 - Asp100 also shows variability of the substrate binding cleft as the distance between Asp98 Oδ2 to Gly113 Cα in Mycobacterium smegmatis is 4.5 Ǻ while the corresponding distances in Mycobacterium tuberculosis and Escherichia coli are 3.1 Ǻ and 6.7 Ǻ respectively. The hydrogen bonded interactions between Asn116, His22 and Asp95 indicate a stereochemically favorable arrangement of these residues for catalytic action. 相似文献
12.
YteR, a hypothetical protein with unknown functions, is derived from Bacillus subtilis strain 168 and has an overall structure similar to that of bacterial unsaturated glucuronyl hydrolase (UGL), although it exhibits little amino acid sequence identity with UGL. UGL releases unsaturated glucuronic acid from glycosaminoglycan treated with glycosaminoglycan lyases. The amino acid sequence of YteR shows a significant homology (26% identity) with the hypothetical protein YesR also from B. subtilis strain 168. To clarify the intrinsic functions of YteR and YesR, both proteins were overexpressed in Escherichia coli, purified, and characterized. Based on their gene arrangements in genome and enzyme properties, YteR and YesR were found to constitute a novel enzyme activity, "unsaturated rhamnogalacturonyl hydrolase," classified as new glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) obtained from RG type-I treated with RG lyases and releases an unsaturated galacturonic acid. The crystal structure of YteR complexed with unsaturated chondroitin disaccharide (UGL substrate) was obtained and compared to the structure of UGL complexed with the same disaccharide. The UGL substrate is sterically hindered with the active pocket of YteR. The protruding loop of YteR prevents the UGL substrate from being bound effectively. The most likely candidate catalytic residues for general acid/base are Asp143 in YteR and Asp135 in YesR. This is supported by three-dimensional structural and site-directed mutagenesis studies. These findings provide molecular insights into novel enzyme catalysis and sequential reaction mechanisms involved in RG-I depolymerization by bacteria. 相似文献
13.
Manjasetty BA Niesen FH Delbrück H Götz F Sievert V Büssow K Behlke J Heinemann U 《Biological chemistry》2004,385(10):935-942
The human protein FLJ36880 belongs to the fumarylacetoacetate hydrolase family. The X-ray structure of FLJ36880 has been determined to 2.2 A resolution employing the semi-automated high-throughput structural genomics approach of the Protein Structure Factory. FLJ36880 adopts a mixed beta-sandwich roll fold and forms homodimers in crystals as well as in solution. One Mg2+ ion is bound to each subunit of the dimeric protein by coordination to three carboxylate oxygens and three water molecules. These metal binding sites are accessible from the same surface of the dimer, partly due to the disorder of the undecapeptide stretch D29 to L39. The overall structure and metal binding site of FLJ36880 bear clear similarities to the C-terminal domain of the bifunctional enzyme HpcE from Escherichia coli C, fumarylacetoacetate hydrolase from Mus musculus and to YcgM (Apc5008) from E. coli 1262. These similarities provide a framework for suggesting biochemical functions and evolutionary relationships of FLJ36880. It appears highly probable that the metal binding sites are involved in an enzymatic activity related to the catabolism of aromatic amino acids. Two point mutations in the active-site of FAH, responsible for the metabolic disease hereditary tyrosinemia type I (HTI) in humans, affect residues that are structurally conserved in FLJ36880 and located in the putative catalytic site. 相似文献
14.
Bompard-Gilles C Remaut H Villeret V Prangé T Fanuel L Delmarcelle M Joris B Frère J Van Beeumen J 《Structure (London, England : 1993)》2000,8(9):971-980
BACKGROUND: beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis. The most common bacterial resistance mechanism against beta-lactam compounds is the synthesis of beta-lactamases that hydrolyse beta-lactam rings. These enzymes are believed to have evolved from cell-wall DD-peptidases. Understanding the biochemical and mechanistic features of the beta-lactam targets is crucial because of the increasing number of resistant bacteria. DAP is a D-aminopeptidase produced by Ochrobactrum anthropi. It is inhibited by various beta-lactam compounds and shares approximately 25% sequence identity with the R61 DD-carboxypeptidase and the class C beta-lactamases. RESULTS: The crystal structure of DAP has been determined to 1.9 A resolution using the multiple isomorphous replacement (MIR) method. The enzyme folds into three domains, A, B and C. Domain A, which contains conserved catalytic residues, has the classical fold of serine beta-lactamases, whereas domains B and C are both antiparallel eight-stranded beta barrels. A loop of domain C protrudes into the substrate-binding site of the enzyme. CONCLUSIONS: Comparison of the biochemical properties and the structure of DAP with PBPs and serine beta-lactamases shows that although the catalytic site of the enzyme is very similar to that of beta-lactamases, its substrate and inhibitor specificity rests on residues of domain C. DAP is a new member of the family of penicillin-recognizing proteins (PRPs) and, at the present time, its enzymatic specificity is clearly unique. 相似文献
15.
Han BG Jeong KC Cho JW Jeong BC Song HK Lee JY Shin DH Lee S Lee BI 《FEBS letters》2012,586(9):1384-1388
Pyrococcus furiosus PF2050 is an uncharacterized putative protein that contains two DUF2666 domains. Functional and structural studies of PF2050 have not previously been performed. In this study, we determined the crystal structure of PF2050. The structure of PF2050 showed that the two DUF2666 domains interact tightly, forming a globular structure. Each DUF2666 domain comprises an antiparallel β-sheet and an α-helical bundle. One side of the PF2050 structure has a positively charged basic cleft, which may have a DNA-binding function. Furthermore, we confirmed that PF2050 interacts with circular and linear dsDNA. 相似文献
16.
Crystal structure of extracellular human BAFF, a TNF family member that stimulates B lymphocytes 总被引:8,自引:0,他引:8
Karpusas M Cachero TG Qian F Boriack-Sjodin A Mullen C Strauch K Hsu YM Kalled SL 《Journal of molecular biology》2002,315(5):1145-1154
B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R. 相似文献
17.
Leukotriene (LT) A(4) hydrolase/aminopeptidase (LTA4H) is a bifunctional zinc enzyme that catalyzes the biosynthesis of LTB4, a potent lipid chemoattractant involved in inflammation, immune responses, host defense against infection, and PAF-induced shock. The high resolution crystal structure of LTA4H in complex with the competitive inhibitor bestatin reveals a protein folded into three domains that together create a deep cleft harboring the catalytic Zn(2+) site. A bent and narrow pocket, shaped to accommodate the substrate LTA(4), constitutes a highly confined binding region that can be targeted in the design of specific anti-inflammatory agents. Moreover, the structure of the catalytic domain is very similar to that of thermolysin and provides detailed insight into mechanisms of catalysis, in particular the chemical strategy for the unique epoxide hydrolase reaction that generates LTB(4). 相似文献
18.
Cloning of the human thiamine transporter, a member of the folate transporter family. 总被引:7,自引:0,他引:7
B Dutta W Huang M Molero R Kekuda F H Leibach L D Devoe V Ganapathy P D Prasad 《The Journal of biological chemistry》1999,274(45):31925-31929
We have isolated a cDNA from human placenta, which, when expressed heterologously in mammalian cells, mediates the transport of the water-soluble vitamin thiamine. The cDNA codes for a protein of 497 amino acids containing 12 putative transmembrane domains. Northern blot analysis indicates that this transporter is widely expressed in human tissues. When expressed in HeLa cells, the cDNA induces the transport of thiamine (K(t) = 2.5 +/- 0.6 microM) in a Na(+)-independent manner. The cDNA-mediated transport of thiamine is stimulated by an outwardly directed H(+) gradient. Substrate specificity assays indicate that the transporter is specific to thiamine. Even though thiamine is an organic cation, the cDNA-induced thiamine transport is not inhibited by other organic cations. Similarly, thiamine is not a substrate for the known members of mammalian organic cation transporter family. The thiamine transporter gene, located on human chromosome 1q24, consists of 6 exons and is most likely the gene defective in the metabolic disorder, thiamine-responsive megaloblastic anemia. At the level of amino acid sequence, the thiamine transporter is most closely related to the reduced-folate transporter and thus represents the second member of the folate transporter family. 相似文献
19.
Kitago Y Karita S Watanabe N Kamiya M Aizawa T Sakka K Tanaka I 《The Journal of biological chemistry》2007,282(49):35703-35711
The crystal structure of Cel44A, which is one of the enzymatic components of the cellulosome of Clostridium thermocellum, was solved at a resolution of 0.96 A. This enzyme belongs to glycoside hydrolase family (GH family) 44. The structure reveals that Cel44A consists of a TIM-like barrel domain and a beta-sandwich domain. The wild-type and the E186Q mutant structures complexed with substrates suggest that two glutamic acid residues, Glu(186) and Glu(359), are the active residues of the enzyme. Biochemical experiments were performed to confirm this idea. The structural features indicate that GH family 44 belongs to clan GH-A and that the reaction catalyzed by Cel44A is retaining type hydrolysis. The stereochemical course of hydrolysis was confirmed by a (1)H NMR experiment using the reduced cellooligosaccharide as a substrate. 相似文献
20.
Angiopoietin-3, a novel member of the angiopoietin family 总被引:11,自引:0,他引:11
A cDNA clone encoding angiopoietin-3 protein (Ang3), a novel member of the angiopoietin family, was identified. Ang3 cDNA was cloned from a human aorta cDNA library. Ang3 is a 503 amino acid protein having 45.1% and 44.7% identity with human angiopoietin-1 and human angiopoietin-2, respectively. Ang3 mRNA is expressed in lung and cultured human umbilical vein endothelial cells (HUVECs). Ang3 mRNA expression in HUVECs was slightly decreased by vascular endothelial cell growth factor treatment, suggesting that the regulation of Ang3 mRNA expression is different from that of Ang2. 相似文献