首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Pulmonary hypertension (PH) is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH) and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4) is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT)-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.  相似文献   

2.
Pulmonary Hypertension is a terminology encompassing a range of etiologically different pulmonary vascular diseases. The most common is that termed pulmonary arterial hypertension or PAH; a rare but often fatal disease characterized by a mean pulmonary arterial pressure of >25?mmHg. PAH is associated with a complex etiology highlighted by core characteristics of increased pulmonary vascular resistance and elevation of mean pulmonary artery pressure. When sustained, pulmonary vascular remodeling occurs and eventually patients pass away due to right heart failure. Hypoxic pulmonary vasoconstriction is an early event occurring in pulmonary hypertension due to chronic exposure to hypoxia. While the underlying mechanisms of hypoxic pulmonary vasoconstriction may be controversial, a role for RhoA/Rho kinase mediated regulation of intracellular Ca(2+) has been recently identified. Further study suggests that RhoA may have an integral role in other pathophysiological processes such as cell proliferation and migration occurring in all forms of PH. Indeed Rho proteins are known to play essential roles in actin cytoskeleton organization in all eukaryotic cells and thus Rho and Rho-GTPases are implicated in fundamental cellular processes such as cellular proliferation, migration, adhesion, apoptosis and gene expression. This review focuses on providing an overview of the role of RhoA/Rho kinase in currently available animal models of pulmonary hypertension.  相似文献   

3.
Excessive proliferation of vascular wall cells underlies the development of elevated vascular resistance in hypoxic pulmonary hypertension (PH), but the responsible mechanisms remain unclear. Growth-promoting effects of catecholamines may contribute. Hypoxemia causes sympathoexcitation, and prolonged stimulation of alpha(1)-adrenoceptors (alpha(1)-ARs) induces hypertrophy and hyperplasia of arterial smooth muscle cells and adventitial fibroblasts. Catecholamine trophic actions in arteries are enhanced when other conditions favoring growth or remodeling are present, e.g., injury or altered shear stress, in isolated pulmonary arteries from rats with hypoxic PH. The present study examined the hypothesis that catecholamines contribute to pulmonary vascular remodeling in vivo in hypoxic PH. Mice genetically deficient in norepinephrine and epinephrine production [dopamine beta-hydroxylase(-/-) (DBH(-/-))] or alpha(1)-ARs were examined for alterations in PH, cardiac hypertrophy, and vascular remodeling after 21 days exposure to normobaric 0.1 inspired oxygen fraction (Fi(O(2))). A decrease in the lumen area and an increase in the wall thickness of arteries were strongly inhibited in knockout mice (order of extent of inhibition: DBH(-/-) = alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-)). Distal muscularization of small arterioles was also reduced (DBH(-/-) > alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-) mice). Despite these reductions, increases in right ventricular pressure and hypertrophy were not attenuated in DBH(-/-) and alpha(1B)-AR(-/-) mice. However, hematocrit increased more in these mice, possibly as a consequence of impaired cardiovascular activation that occurs during reduction of Fi(O(2)). In contrast, in alpha(1D)-AR(-/-) mice, where hematocrit increased the same as in wild-type mice, right ventricular pressure was reduced. These data suggest that catecholamine stimulation of alpha(1B)- and alpha(1D)-ARs contributes significantly to vascular remodeling in hypoxic PH.  相似文献   

4.
Pulmonary hypertension (PH) is a progressive and fatal disease with no cure. Vascular remodeling in PH involves intraluminal growth of endothelial and smooth muscle cells, leading to obliterative vascular lesions. Cell growth in these lesions is quasi-neoplastic, with evidence of monoclonality, apoptosis resistance and cancer-like metabolic derangements. Herein we tested the effect of human interferon alpha 2b (IFNα), a pleiotropic cytokine and anti-cancer therapeutic, on the development and progression of PH in the rat SU5416/hypoxia (SUH) model and mouse hypoxia model of the disease. In both models IFNα attenuated the development of PH and reversed established PH as assessed by measuring right ventricular systolic pressure and right ventricular hypertrophy. The effect of IFNα was dependent on the type I interferon receptor (IFNAR) since mice lacking a subunit of the IFNAR were not protected by IFNα. Morphometric analysis of pulmonary aterioles from hypoxic mice or SUH rats showed that IFNα inhibited pulmonary vascular remodeling in both models and that IFNα reversed remodeling in SUH rats with established disease. Immunohistochemical staining revealed that IFNα decreased the number of PCNA and Tunel positive cells in the wall of pulmonary arterioles. In vitro, IFNα inhibited proliferation of human pulmonary artery smooth muscle cells and as well as human pulmonary artery endothelial cell proliferation and apoptosis. Together these findings demonstrate that IFNα reverses established experimental PH and provide a rationale for further exploration of the use of IFNα and other immunotherpies in PH.  相似文献   

5.
miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling   总被引:2,自引:0,他引:2  
Chronic hypoxia causes pulmonary vascular remodeling leading to pulmonary hypertension (PH) and right ventricle (RV) hypertrophy. Aberrant expression of microRNA (miRNA) is closely associated with a number of pathophysiologic processes. However, the role of miRNAs in chronic hypoxia-induced pulmonary vascular remodeling and PH has not been well characterized. In this study, we found increased expression of miR-21 in distal small arteries in the lungs of hypoxia-exposed mice. Putative miR-21 targets, including bone morphogenetic protein receptor (BMPR2), WWP1, SATB1, and YOD1, were downregulated in the lungs of hypoxia-exposed mice and in human pulmonary artery smooth muscle cells (PASMCs) overexpressing miR-21. We found that sequestration of miR-21, either before or after hypoxia exposure, diminished chronic hypoxia-induced PH and attenuated hypoxia-induced pulmonary vascular remodeling, likely through relieving the suppressed expression of miR-21 targets in the lungs of hypoxia-exposed mice. Overexpression of miR-21 enhanced, whereas downregulation of miR-21 diminished, the proliferation of human PASMCs in vitro and the expression of cell proliferation associated proteins, such as proliferating cell nuclear antigen, cyclin D1, and Bcl-xL. Our data suggest that miR-21 plays an important role in the pathogenesis of chronic hypoxia-induced pulmonary vascular remodeling and also suggest that miR-21 is a potential target for novel therapeutics to treat chronic hypoxia associated pulmonary diseases.  相似文献   

6.
Survival rates for patients with pulmonary hypertension (PH) remain low, and our understanding of the mechanisms involved are incomplete. Here we show in a mouse model of chronic hypoxia (CH)-induced PH that the nuclear protein and damage-associate molecular pattern molecule (DAMP) high mobility group box 1 (HMGB1) contributes to PH via a Toll-like receptor 4 (TLR4)-dependent mechanism. We demonstrate extranuclear HMGB1 in pulmonary vascular lesions and increased serum HMGB1 in patients with idiopathic pulmonary arterial hypertension. The increase in circulating HMGB1 correlated with mean pulmonary artery pressure. In mice, we similarly detected the translocation and release of HMGB1 after exposure to CH. HMGB1-neutralizing antibody attenuated the development of CH-induced PH, as assessed by measurement of right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling and endothelial activation and inflammation. Genetic deletion of the pattern recognition receptor TLR4, but not the receptor for advanced glycation end products, likewise attenuated CH-induced PH. Finally, daily treatment of mice with recombinant human HMGB1 exacerbated CH-induced PH in wild-type (WT) but not Tlr4−/− mice. These data demonstrate that HMGB1-mediated activation of TLR4 promotes experimental PH and identify HMGB1 and/or TLR4 as potential therapeutic targets for the treatment of PH.  相似文献   

7.
Pulmonary hypertension (PH) is associated with aberrant vascular remodeling and right ventricular (RV) dysfunction that contribute to early mortality. Large animal models that recapitulate human PH are essential for mechanistic studies and evaluating novel therapies; however, these models are not readily accessible to the field owing to the need for advanced surgical techniques or hypoxia. In this study, we present a novel swine model that develops cardiopulmonary hemodynamics and structural changes characteristic of chronic PH. This percutaneous model was created in swine (n=6) by combining distal embolization of dextran beads with selective coiling of the lobar pulmonary arteries (2 procedures per lung over 4 weeks). As controls, findings from this model were compared with those from a standard weekly distal embolization model (n=6) and sham animals (n=4). Survival with the combined embolization model was 100%. At 8 weeks after the index procedure, combined embolization procedure animals had increased mean pulmonary artery pressure (mPA) and pulmonary vascular resistance (PVR) compared to the controls with no effect on left heart or systemic pressures. RV remodeling and RV dysfunction were also present with a decrease in the RV ejection fraction, increase in the myocardial performance index, impaired longitudinal function, as well as cardiomyocyte hypertrophy, and interstitial fibrosis, which were not present in the controls. Pulmonary vascular remodeling occurred in both embolization models, although only the combination embolization model had a decrease in pulmonary capacitance. Taken together, these cardiopulmonary hemodynamic and structural findings identify the novel combination embolization swine model as a valuable tool for future studies of chronic PH.  相似文献   

8.
9.
Pulmonary arterial hypertension (PAH), defined as group 1 of the World Heart Organisation (WHO) classification of pulmonary hypertension, is an uncommon disorder of the pulmonary vascular system. It is characterised by an increased pulmonary artery pressure, increased pulmonary vascular resistance and specific histological changes. It is a progressive disease finally resulting in right heart failure and premature death. Typical symptoms are dyspnoea at exercise, chest pain and syncope; furthermore clinical signs of right heart failure develop with disease progression. Echocardiography is the key investigation when pulmonary hypertension is suspected, but a reliable diagnosis of PAH and associated conditions requires an intense work-up including invasive measurement by right heart catheterisation. Treatment includes general measures and drugs targeting the pulmonary artery tone and vascular remodelling. This advanced medical therapy has significantly improved morbidity and mortality in patients with PAH in the last decade. Combinations of these drugs are indicated when treatment goals of disease stabilisation are not met. In patients refractory to medical therapy lung transplantation should be considered an option.  相似文献   

10.
Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling and ultimately death. Two rodent models of PH include treatment with monocrotaline or exposure to a vascular endothelial growth factor receptor inhibitor and hypoxia. Studies in these models indicated that damaged lung cells evolve extracellular vesicles which induce production of progenitors that travel back to the lung and induce PH. A study in patients with pulmonary myelofibrosis and PH indicated that 100 cGy lung irradiation could remit both diseases. Previous studies indicated that murine progenitors were radiosensitive at very low doses, suggesting that 100 cGy treatment of mice with induced PH might be an effective PH therapy. Our hypothesis is that the elimination of the PH-inducing marrow cells by low dose irradiation would remove the cellular influences creating PH. Here we show that low dose whole-body irradiation can both prevent and reverse established PH in both rodent models of PH.  相似文献   

11.
HMG-CoA-reductase inhibitors (statins) influence lipid metabolism and have pleiotropic effects. Several statins reduce various forms of pulmonary hypertension (PH) in animal models. The relationship between atorvastatin and expression of serotonin transporter protein (5-HTT) remains unknown. This study focused on the effects of atorvastatin on the course of monocrotaline (MCT)-induced PH and its relation to 5-HTT expression. Male Sprague-Dawley rats were challenged with MCT with or without subsequent daily oral treatment with 0.1, 1, and 10 mg/kg of atorvastatin for 28 days. Over the 4-wk course, the progression of PH was followed by transthoracic echocardiography [pulmonary artery pressure was assessed by pulmonary artery flow acceleration time (PAAT), an estimate reciprocal to pulmonary artery pressure], and, at the end of the 4-wk course, invasive right ventricular pressure, right ventricular weight, quantitative morphology, and 5-HTT expression were measured. MCT caused significant PH as early as 7 days after injection. Atorvastatin treatment increased PAAT and reduced right ventricular pressure, right ventricular hypertrophy, and vascular remodeling over the 4-wk course. MCT challenge was associated with increased pulmonary vascular 5-HTT expression, and atorvastatin treatment reduced the 5-HTT expression. MCT-induced PH over the course of 4 wk can be easily followed by transthoracic echocardiography, and atorvastatin is effective in reducing the PH. Atorvastatin's effects are associated with a decrease of 5-HTT expression.  相似文献   

12.
Physiopathological discrepancies exist between the most widely used models of pulmonary hypertension (PH), namely monocrotaline- and hypoxia-induced PH. The development of a new model could help in the understanding of underlying mechanisms. Repeated alpha-naphthylthiourea (ANTU) injections (5 mg/kg weekly, 3 wk) induced pulmonary vascular remodeling, which was associated with development of PH and right ventricular hypertrophy. ANTU followed by granulocyte colony-stimulating factor (G-CSF; 25 microgram. kg(-1). day(-1) subcutaneously, 3 days/wk) induced higher pulmonary arterial pressures and right ventricular hypertrophy than ANTU alone. Lidocaine, which inhibits neutrophil functions, inhibited PH exacerbation by G-CSF. Endothelial nitric oxide synthase expression, measured to assess ANTU-related endothelial toxicity, decreased significantly in ANTU-treated rats and fell even more sharply when G-CSF was given. This occurred despite a significant increase in vascular endothelial cell growth factor expression in lung and right ventricle in rats given ANTU alone and even more in rats given ANTU plus G-CSF. Repeated ANTU administration induces PH with vascular remodeling that can be further aggravated by the neutrophil activator G-CSF.  相似文献   

13.
Hypoxia leads to free radical production, which has a pivotal role in the pathophysiology of pulmonary hypertension (PH). We hypothesized that treatment with extracellular superoxide dismutase (EC-SOD) could ameliorate the development of PH induced by hypoxia. In vitro studies using pulmonary microvascular endothelial cells showed that cells transfected with EC-SOD had significantly less accumulation of xanthine oxidase and reactive oxygen species than nontransfected cells after hypoxia exposure for 24 h. To study the prophylactic role of EC-SOD, adult male wild-type (WT) and transgenic (TG) mice, with lung-specific overexpression of human EC-SOD (hEC-SOD), were exposed to fraction of inspired oxygen (FiO(2)) 10% for 10 d. After exposure, right ventricular systolic pressure (RVSP), right ventricular mass (RV/S + LV), pulmonary vascular wall thickness (PVWT) and pulmonary artery contraction/relaxation were assessed. TG mice were protected against PH compared with WT mice with significantly lower RVSP (23.9 ± 1.24 versus 47.2 ± 3.4), RV/S + LV (0.287 ± 0.015 versus 0.335 ± 0.022) and vascular remodeling, indicated by PVWT (14.324 ± 1.107 versus 18.885 ± 1.529). Functional studies using pulmonary arteries isolated from mice indicated that EC-SOD prevents hypoxia-mediated attenuation of nitric oxide-induced relaxation. Therapeutic potential was assessed by exposing WT mice to FiO(2) 10% for 10 d. Half of the group was transfected with plasmid containing cDNA encoding human EC-SOD. The remaining animals were transfected with empty vector. Both groups were exposed to FiO(2) 10% for a further 10 d. Transfected mice had significantly reduced RVSP (18.97 ± 1.12 versus 41.3 ± 1.5), RV/S + LV (0.293 ± 0.012 versus 0.372 ± 0.014) and PVWT (12.51 ± 0.72 versus 18.98 ± 1.24). On the basis of these findings, we concluded that overexpression of EC-SOD prevents the development of PH and ameliorates established PH.  相似文献   

14.
《Biomarkers》2013,18(6):523-532
Objective: Besides persisting high pulmonary arterial pressure and increased pulmonary vascular resistance, remodelling of pulmonary tissues and subsequently the right heart are the key pathomechanisms of pulmonary hypertension (PH). Extracellular matrix maintenance in this context plays a central role.

Methods: We tested the hypothesis that plasma concentration of matrix metalloproteinase (MMP)-2, tissue inhibitor of matrix metalloproteinases (TIMP)-4 and tenascin C (TNC) might be useful as biomarkers for assessing the severity of PH. Therefore, the concentrations of MMP-2, TIMP-4, TNC and N-terminal b-type natriuretic peptide (NT-proBNP) of 36 PH patients were compared with those of 44 age- and gender-matched healthy volunteers. Additionally, lung function, 6-min walk distance and right heart function were assessed.

Results: In PH patients, significantly elevated plasma levels of MMP-2, TIMP-4, TNC and NT-proBNP were detected. In particular, TIMP-4 was significantly increased in patients with higher NYHA classification, and in patients with severe right ventricular hypertrophy.

Conclusion: Monitoring of plasma TIMP-4 and to a lesser extent of MMP-2 and TNC levels in PH patients might help to assess the beneficial effects of PH pharmacotherapy on tissue remodelling.  相似文献   

15.
The endothelin system in pulmonary hypertension   总被引:12,自引:0,他引:12  
Pulmonary hypertension (PH) may result from numerous clinical entities affecting the pulmonary circulation primarily or secondarily. It is recognized that vascular endothelial dysfunction contributes to the development and perpetuation of PH by creating an imbalance between vasodilating and antiproliferative forces and between vasoconstrictive and proliferative forces. In that context, endothelin-1 (ET-1) overproduction was rapidly targeted as a plausible contributor to the pathogenesis of PH. The lung is recognized as the major site for ET production and clearance. In all animal models of PH studied, circulating plasma ET-1 levels are elevated, accompanied by an increase in lung tissue expression of the peptide. The use of selective ETA and dual ETA-ETB receptor antagonists in these models both in prevention and in therapeutic studies have confirmed the contribution of ET-1 to the rise in pulmonary vascular tone, pulmonary medial hypertrophy, and right ventricular hypertrophy. This is found consistently in models affecting the pulmonary circulation primarily or producing PH secondarily. Recent clinical trials in patients with pulmonary arterial hypertension have confirmed the therapeutic effectiveness of ET-receptor antagonists in humans. We offer a systematic review of the pathogenic role of the ET system in the development of PH as well as the rationale behind the preclinical and ongoing clinical trials with this new class of agents.  相似文献   

16.
Pulmonary hypertension (PH) is a devastating disease leading to progressive hypoxemia, right ventricular failure, and death. Hypoxia can play a pivotal role in PH etiology, inducing pulmonary vessel constriction and remodeling. These events lead to increased pulmonary vessel wall thickness, elevated vascular resistance and right ventricular hypertrophy. The current study examined the association of the inflammatory cytokine macrophage migration inhibitory factor (MIF) with chronic lung disease and its role in the development of hypoxia-induced PH. We found that plasma MIF in patients with primary PH or PH secondary to interstitial lung disease (ILD) was significantly higher than in the control group (P = 0.004 and 0.007, respectively). MIF involvement with hypoxia-induced fibroblast proliferation was examined in both a human cell-line and primary mouse cells from wild-type (mif +/+) and MIF-knockout (mif −/−) mice. In vitro, hypoxia-increased MIF mRNA, extracellular MIF protein accumulation and cell proliferation. Inhibition of MIF inflammatory activity reduced hypoxia-induced cell proliferation. However, hypoxia only increased proliferation of mif −/− cells when they were supplemented with media from mif +/+ cells. This growth increase was suppressed by MIF inhibition. In vivo, chronic exposure of mice to a normobaric atmosphere of 10% oxygen increased lung tissue expression of mRNA encoding MIF and accumulation of MIF in plasma. Inhibition of the MIF inflammatory active site, during hypoxic exposure, significantly reduced pulmonary vascular remodeling, cardiac hypertrophy and right ventricular systolic pressure. The data suggest that MIF plays a critical role in hypoxia-induced PH, and its inhibition may be beneficial in preventing the development and progression of the disease.  相似文献   

17.
Phosphodiesterase (PDE) 4 inhibitors are potent anti-inflammatory drugs with antihypertensive properties, and their therapeutic role in bronchopulmonary dysplasia (BPD) is still controversial. We studied the role of PDE4 inhibition with piclamilast on normal lung development and its therapeutic value on pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) in neonatal rats with hyperoxia-induced lung injury, a valuable model for premature infants with severe BPD. The cardiopulmonary effects of piclamilast treatment (5 mg·kg(-1)·day(-1)) were investigated in two models of experimental BPD: 1) daily treatment during continuous exposure to hyperoxia for 10 days; and 2) late treatment and injury-recovery in which pups were exposed to hyperoxia or room air for 9 days, followed by 9 or 42 days of recovery in room air combined with treatment started on day 6 of oxygen exposure until day 18. Prophylactic piclamilast treatment reduced pulmonary fibrin deposition, septum thickness, arteriolar wall thickness, arteriolar vascular smooth muscle cell proliferation and RVH, and prolonged survival. In the late treatment and injury-recovery model, hyperoxia caused persistent aberrant alveolar and vascular development, PH, and RVH. Treatment with piclamilast in both models reduced arteriolar wall thickness, attenuated RVH, and improved right ventricular function in the injury recovery model, but did not restore alveolarization or angiogenesis. Treatment with piclamilast did not show adverse cardiopulmonary effects in room air controls in both models. In conclusion, PDE4 inhibition attenuated and partially reversed PH and RVH, but did not advance alveolar development in neonatal rats with hyperoxic lung injury or affect normal lung and heart development.  相似文献   

18.

Background

Pulmonary hypertension (PH) is associated with progressive impairment of right ventricular function, reduced exercise capacity and a poor prognosis. Little is known about the prevalence, clinical manifestation and impact of atrial fibrillation (AF) on cardiac function in PH.

Methods

In a four year single-centre retrospective analysis 225 patients with confirmed PH of various origins were enrolled to investigate the prevalence of AF, and to assess the clinical manifestation, 6-minute walk distance, NT-proBNP levels, echocardiographic parameters and hemodynamics obtained by right heart catheterization in PH with AF.

Results

AF was prevalent in 31.1%. In patients with PH and AF, parameters of clinical deterioration (NYHA/WHO functional class, 6-minute walk distance, NT-proBNP levels) and renal function were significantly compromised compared to patients with PH and sinus rhythm (SR). In the total PH cohort and in PH not related to left heart disease occurrence of AF was associated with an increase of right atrial pressure (RAP) and right atrial dilatation. While no direct association was found between pulmonary artery pressure (PAP) and AF in these patients, right ventricular function was reduced in AF, indicating more advanced disease. In PH due to left heart failure the prevalence of AF was particularly high (57.7% vs. 23.1% in other forms of PH). In this subgroup, left atrial dilatation, increase of pulmonary capillary wedge pressure, PAP and RAP were more pronounced in AF than in SR, suggesting that more marked backward failure led to AF in this setting.

Conclusion

PH is associated with increased prevalence of AF. Occurrence of AF in PH indicates clinical deterioration and more advanced disease.  相似文献   

19.
Pulmonary arterial hypertension (PAH) is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH), leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8) and control lung tissue (n = 8) leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO) and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P) metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH.  相似文献   

20.

Background

The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function.

Methods

Saline-treated control, MCT-exposed, MCT-exposed and NAC treated rats (day 14–28) were evaluated at day 28 following MCT for hemodynamic parameters (right ventricular systolic pressure, mean pulmonary arterial pressure and cardiac output), right ventricular hypertrophy, pulmonary vascular morphometry, lung inflammatory cells immunohistochemistry (monocyte/macrophages and dendritic cells), IL-6 expression, cardiomyocyte hypertrophy and cardiac fibrosis.

Results

The treatment with NAC significantly decreased pulmonary vascular remodeling, lung inflammation, and improved total pulmonary resistance (from 0.71 ± 0.05 for MCT group to 0.50 ± 0.06 for MCT + NAC group, p < 0.05). Right ventricular function was also improved with NAC treatment associated with a significant decrease in cardiomyocyte hypertrophy (625 ± 69 vs. 439 ± 21 μm2 for MCT and MCT + NAC group respectively, p < 0.001) and heart fibrosis (14.1 ± 0.8 vs. 8.8 ± 0.1% for MCT and MCT + NAC group respectively, p < 0.001).

Conclusions

Through its immuno-modulatory and cardioprotective properties, NAC has beneficial effect on pulmonary vascular and right heart function in experimental PH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号