首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Recent studies show that alterations in the body's biological rhythms can lead to serious pathologies, including cancer. Acute and chronic ethanol consumption impairs the immune system by causing specific defects in the cellular components of the innate immune response and by creating increased risk and susceptibility to infections and cancer. NK cells are critical for immune surveillance against infected and malignant cells. To assess whether NK cell function follows a circadian trend and to determine ethanol effects on this rhythm, we measured, over a 24-h period, mRNA and protein levels of granzyme B, perforin, and the cytokine IFN-gamma, as well as NK cell activity, in the splenocytes of ad libitum-fed, pair-fed, and ethanol-fed Sprague Dawley male rats. Circadian rhythms were found in mRNA and protein levels of granzyme B, perforin, and IFN-gamma. A circadian pattern was also detected in NK cell cytolytic activity. Our data further demonstrated how chronic ethanol suppressed NK cell activity by directly disrupting the circadian rhythms of granzyme B, perforin, and IFN-gamma. These findings identify the circadian functions of splenic NK cells and show the vulnerability of these rhythms to chronic ethanol.  相似文献   

4.
Osteosarcoma and Ewing’s sarcoma tumor cells are susceptible to IL15-induced or antibody-mediated cytolytic activity of NK cells in short-term cytotoxicity assays. When encountering the tumor environment in vivo, NK cells may be in contact with tumor cells for a prolonged time period. We explored whether a prolonged interaction with sarcoma cells can modulate the activation and cytotoxic activity of NK cells. The 40 h coculture of NK cells with sarcoma cells reversibly interfered with the IL15-induced expression of NKG2D, DNAM-1 and NKp30 and inhibited the cytolytic activity of NK cells. The inhibitory effects on receptor expression required physical contact between NK cells and sarcoma cells and were independent of TGF-β. Five days pre-incubation of NK cells with IL15 prevented the down-regulation of NKG2D and cytolytic activity in subsequent cocultures with sarcoma cells. NK cell FcγRIIIa/CD16 receptor expression and antibody-mediated cytotoxicity were not affected after the coculture. Inhibition of NK cell cytotoxicity was directly linked to the down-regulation of the respective NK cell-activating receptors. Our data demonstrate that the inhibitory effects of sarcoma cells on the cytolytic activity of NK cells do not affect the antibody-dependent cytotoxicity and can be prevented by pre-activation of NK cells with IL15. Thus, the combination of cytokine-activated NK cells and monoclonal antibody therapy may be required to improve tumor targeting and NK cell functionality in the tumor environment.  相似文献   

5.
Distinct requirements for IFNs and STAT1 in NK cell function   总被引:9,自引:0,他引:9  
NK cell functions were examined in mice with a targeted mutation of the STAT1 gene, an essential mediator of IFN signaling. Mice deficient in STAT1 displayed impaired basal NK cytolytic activity in vitro and were unable to reject transplanted tumors in vivo, despite the presence of normal numbers of NK cells. IL-12 enhanced NK-mediated cytolysis, but poly(I:C) did not, and a similar phenotype occurred in mice lacking IFNalpha receptors. Molecules involved in activation and lytic function of NK cells (granzyme A, granzyme B, perforin, DAP10, and DAP12) were expressed at comparable levels in both wild-type and STAT1(-/-) mice, and serine esterase activity necessary for CTL function was normal, showing that the lytic machinery was intact. NK cells with normal cytolytic activity could be derived from STAT1(-/-) bone marrow progenitors in response to IL-15 in vitro, and enhanced NK lytic activity and normal levels of IFN-gamma were produced in response to IL-12 treatment in vivo. Despite these normal responses to cytokines, STAT1(-/-) mice could not reject the NK-sensitive tumor RMA-S, even following IL-12 treatment in vivo. Whereas in vitro NK cytolysis was also reduced in mice lacking both type I and type II IFN receptors, these mice resisted tumor challenge. These results demonstrate that both IFN-alpha and IFN-gamma are required to maintain NK cell function and define a STAT1-dependent but partially IFN-independent pathway required for NK-mediated antitumor activity.  相似文献   

6.
Natural killer (NK) cells target and kill tumor cells by direct anti-tumor cytotoxicity. NK lytic-associated molecule (NKLAM) is a protein involved in this cytolytic function. Acting as an E3 ubiquitin ligase, NKLAM binds to and ubiquitinates a novel protein, uridine-cytidine kinase like-1 (UCKL-1), targeting it for degradation. However, UCKL-1’s function in tumor cell survival and NK cell cytotoxicity is unknown. UCKL-1’s homology to uridine kinases and over expression in tumor cells suggests a role for UCKL-1 in tumor growth and/or survival. We propose that NKLAM and UCKL-1 interact in the tumor cell, where degradation of UCKL-1 leads to increased tumor cell apoptosis. Here we use RNA interference to downregulate UCKL-1 expression in K562 erythroleukemia cells. It was seen that downregulation of UCKL-1 initiated apoptosis and slowed the cell cycle, resulting in lower growth in the small interfering UCKL-1 RNA treated K562 cell culture. In addition, the chemotherapeutic agent staurosporine was seen to be more effective in inducing cell death by apoptosis in UCKL-1 depleted K562 cells compared with controls. We also found that UCKL-1 depleted K562 cells were more susceptible to NK mediated cytolysis than controls. These results indicate a role for UCKL-1 in tumor cell survival and suggest possible therapeutic potential of UCKL-1 inhibitors in cancer treatment.  相似文献   

7.
Naltrexone, an opioid antagonist, has been used in clinical trials to treat alcoholism. As the opioid peptides beta-endorphin and enkephalin increase splenic NK cell function in laboratory animals, it is anticipated that naltrexone treatment will cause immunosuppression. However, we report in this study that chronic naltrexone administration in laboratory rats increases the cytolytic activity of NK cells. It also prevents alcohol's suppressive effect on these cells. We identified that, in the splenocytes, delta opioid receptor expression is tightly controlled by negative feedback regulation of micro opioid receptors. Naltrexone disrupts this feedback control by reducing micro opioid receptor function, thereby up-regulating delta opioid receptor binding, which results in an enhanced NK cell cytolytic response to delta opioid receptor ligands. We conclude that naltrexone, which has been shown to be a promising agent for the clinical management of alcoholism, may have potential use in the treatment of immune deficiency in alcoholic and nonalcoholic patients.  相似文献   

8.
Natural killer (NK) cells play an important role in hepatitis B virus (HBV) infection control, and are regulated by a complex network of activating and inhibitory receptors. However, NK cell activity in HBV patients remains poorly understood. The objective of this study was to investigate the phenotypic and functional characteristics of circulating NK cells in patients during different chronic hepatitis B (CHB) infection stages. We investigated NK cell phenotypes, receptor expression and function in 86 CHB patients and 20 healthy controls. NK cells were purified and NK cell subsets were characterized by flow cytometry. Cytotoxic activity (CD107a) and interferon-gamma (IFN-γ) secretion were examined, and Natural Killer p46 (NKP46) blockade and spontaneous NK cell cytolytic activity against K562, HepG2 and HepG2.215 cell lines was studied. Activating NKp46 receptor expression was higher in inactive HBsAg carriers when compared with other groups (p = 0.008). NKp46 expression negatively correlated with HBV DNA (R = -0.253, p = 0.049) and ALT (R = -0.256, p = 0.045) levels. CD107a was higher in immune-activated groups when compared with immune-tolerant groups (p = 0.039). CD107a expression was related to viral load (p = 0.02) and HBeAg status (p = 0.024). In vitro NKp46 blockade reduced NK cell cytolytic activity against HepG2 and HepG2.215 cell lines (p = 0.02; p = 0.039). Furthermore, NK cells from high viral load CHB patients displayed significantly lower specific cytolytic activity against anti-NKp46-loaded K562 targets (p = 0.0321). No significant differences were observed in IFN-γ secretion (p > 0.05). In conclusion, NKp46 expression regulates NK cell cytolytic function. NKp46 may moderate NK cell activity during HBV replication suppression and HBV-associated liver damage and may be critical for NK cell activity during CHB infection.  相似文献   

9.
MHC class I molecules protect normal and transformed cells from lysis by natural killer (NK) cells through recognition of receptors expressed on leucocytes. Defects in NK cell activity and lymphokine activated killer (LAK) cell generation have been previously demonstrated in patients with renal cell carcinoma (RCC). However, to date, the importance of NK receptor/MHC class I interactions for immune evasion by RCC cells has not been described. In this study, human RCC cell lines (HTB46, HTB47, ACHN, CRL 1933 and HTB44) were found to be susceptible to lysis by both NK cells and interleukin-15 (IL-15)-derived LAK cells from normal donors in vitro. However, when NK cells were co-cultured with RCC cells their expression of the CD94 NK receptor molecule was significantly increased and their cytolytic activity against RCC targets was reduced. The cytolytic activity of NK cells was restored by the addition of IL-15, which further augmented the expression of CD94 on CD56+ NK cells. Disruption of NK receptor-MHC class I interactions by the addition of blocking antibodies to CD94 had no effect on the lysis of K562 or HTB47 targets by NK cells. However, the sensitivity of HTB46 cells to NK-mediated lysis was increased by blocking the CD94 receptor molecule, but only when the NK cells had not been previously co-cultured with RCC cells. This was independent of the presence of IL-15. These results show that RCC cells can inhibit NK activity via CD94 and suggest that disruption of interactions between receptor and ligand on RCC cells in vivo may augment the immune response against tumours by innate effector cells.  相似文献   

10.
NK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression. Unexpectedly, although these clones expressed NKG2D and mediated a strong cytolytic activity toward K562, Daudi and allogeneic MHC-class I+ carcinoma cells, they were unable to lyse the autologous MHC-I- tumor cell line. This defect was associated with alterations in the expression of natural cytotoxicity receptor (NCR) by NK cells and the NKG2D ligands, MHC-I-related chain A, MHC-I-related chain B, and UL16 binding protein 1, and the ICAM-1 by tumor cells. In contrast, the carcinoma cell line was partially sensitive to allogeneic healthy donor NK cells expressing high levels of NCR. Indeed, this lysis was inhibited by anti-NCR and anti-NKG2D mAbs, suggesting that both receptors are required for the induced killing. The present study indicates that the MHC-I-deficient lung adenocarcinoma had developed mechanisms of escape from the innate immune response based on down-regulation of NCR and ligands required for target cell recognition.  相似文献   

11.
The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.  相似文献   

12.
13.
Tumor cells engineered to secrete TNF were used as a model to examine how persistently high local concentrations of TNF suppress tumor growth. TNF secretion had no effect on tumor cell proliferation in vitro but caused a very impressive growth arrest in vivo that was dependent on both bone marrow- and non-bone marrow-derived host cells expressing TNFR. Suppression also required an endogenous IFN-gamma pathway consisting minimally of IFN-gamma, IFN-gamma receptor, Stat1, and IFN regulatory factor 1 since mice with targeted disruption of any of the four genes failed to arrest tumor growth. The ability of these mice to suppress tumor growth was restored after they were reconstituted with bone marrow cells from Wt mice. Interestingly, mice lacking the major IFN-gamma-inducing cytokines IL-12 and IL-18 or T cells, B cells, and the majority of NK cells that are potential sources of IFN-gamma nevertheless inhibited tumor development. Moreover, multiple lines of evidence indicated that local release of IFN-gamma was not required to inhibit tumor formation. These results strongly suggest a novel function for the endogenous IFN-gamma pathway that without measurable IFN-gamma production or activity affects the ability of TNF to suppress tumor development.  相似文献   

14.
Cytotoxicity not restricted by the major histocompatibility complex (MHC) is mediated by two distinct types of lymphocyte: natural killer (NK) cells and non-MHC-restricted cytotoxic T lymphocytes (CTL). These two types of cytotoxic lymphocytes can be distinguished by antigenic phenotype, function, and molecular genetic studies. In human peripheral blood, NK cells are identified by expression of the Leu-19 and/or CD16 cell surface antigens, and lack of CD3/T cell antigen receptor (Ti) complex expression (i.e., CD3-,Leu-19+). Peripheral blood non-MHC-restricted CTL express both CD3 and Leu-19 (i.e., CD3+, Leu-19+, referred to as Leu-19+ T cells). Both Leu-19+ T cells and NK cells lyse "NK-sensitive" hematopoietic tumor cell targets, such as K562, without deliberate immunization of the host. However, most "NK activity" in peripheral blood is mediated by NK cells, because they are usually more abundant and more efficient cytotoxic effectors than Leu-19+ T cells. The cytolytic activity of both NK cells and Leu-19+ T cells against hematopoietic targets was enhanced by recombinant interleukin 2 (rIL 2). NK cells, but not peripheral blood Leu-19+ T cells, were also capable of lysing solid tumor cell targets after short-term culture in rIL 2. Southern blot analysis of NK cells revealed that both the T cell antigen receptor beta-chain genes and the T cell-associated gamma genes were not rearranged, but were in germ-line configuration. These findings indicate that NK cells are distinct in lineage from T lymphocytes and do not use the T cell antigen receptor genes for target recognition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Current advances and expectations in tumor immunology]   总被引:7,自引:0,他引:7  
K Takeda  K Okumura 《Human cell》2001,14(3):159-163
Natural killer (NK) cells and Interferon (IFN)-gamma have been implicated in immune surveillance against tumor. We demonstrated the critical role of perforin in NK cell-mediated cytotoxic activity and anti-tumor effect in IFN-gamma inducible IL-12. And, we recently reported that TRAIL is constitutively expressed on a substantial proportion of murine NK cells in the liver, and which is responsible for spontaneous cytotoxicity and the anti-metastatic activity against TRAIL-sensitive tumor cells along with perforin and Fas ligand. Interestingly, the TRAIL expression on liver NK cells appeared to be regulated by endogenously produced IFN-gamma. Consisting with this finding, IL-12 and NKT cell specific ligand, alpha-Galactosylceramide (alpha-GalCer), induced TRAIL-mediated cytotoxcity and anti-tumor effect, and which was mediated by TRAIL expressed on IFN-gamma-activated NK cells. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein belonging to the TNF family, which preferentially induces apoptotic cell death in various tumor cells in vitro. Preclinical studies in mice and nonhuman primates have shown that administration of recombinant soluble forms of TRAIL could suppress the growth of TRAIL-sensitive tumor xenografts with no apparent systemic toxicity. These studies suggested a potential utility of TRAIL as a cancer therapeutic, although TRAIL expression at protein levels and its physiological roles in tumor surveillance has remained unknown. Presented findings provide the first evidence for the physiological function of TRAIL as a tumor suppressor.  相似文献   

16.
A reciprocal activating interaction between NK cells and dendritic cells (DC) has been suggested to play a role in the functional regulation of these cells in immunity, but it has been studied only using in vitro generated bone marrow- or monocyte-derived DC. We report that human peripheral blood plasmacytoid DC (pDC) and myeloid DC are necessary to induce NK cell function depending on the type of microbial stimulus. pDC and myeloid DC are required for strongly increased NK cytolytic activity and CD69 expression, in response to inactivated influenza virus or CpG-containing oligonucleotides and poly(I:C), respectively. Secreted type I IFN is required and sufficient for the augmentation of NK cell cytolytic activity in the coculture with pDC or myeloid DC, whereas CD69 expression is dependent on both type I IFN and TNF. In addition, in response to poly(I:C), myeloid DC induce NK cells to produce IFN-gamma through a mechanism dependent on both IL-12 secretion and cell contact between NK cells and myeloid DC, but independent of type I IFN. IL-2-activated NK cells have little to no cytolytic activity for immature myeloid DC and pDC, but are able to induce maturation of these cells. Moreover, IL-2-activated NK cells induce, in the presence of a suboptimal concentration of CpG-containing oligonucleotides, a strong IFN-alpha and TNF production. These data suggest that the reciprocal functional interaction between NK cells and either pDC or myeloid DC may play an important physiological role in the regulation of both innate resistance and adaptive immunity to infections.  相似文献   

17.
Increased natural killer cell activity in viremic HIV-1 infection   总被引:7,自引:0,他引:7  
NK cells are a subset of granular lymphocytes that are critical in the innate immune response to infection. These cells are capable of killing infected cells and secreting integral cytokines and chemokines. The role that this subset of cytolytic cells plays in HIV infection is not well understood. In this study, we dissected the function of NK cells in viremic and aviremic HIV-1-infected subjects, as well as HIV-1-negative control individuals. Despite reduced NK cell numbers in subjects with ongoing viral replication, these cells were significantly more active in secreting both IFN-gamma and TNF-alpha than NK cells from aviremic subjects or HIV-1-negative controls. In addition, NK cells in subjects with detectable viral loads expressed significantly higher levels of CD107a, a marker of lysosomal granule exocytosis. The expression of CD107a correlated with NK cell-mediated cytokine secretion and cytolytic activity as well as with the level of viral replication, suggesting that CD107a represents a good marker for the functional activity of NK cells. Finally, killer Ig-related receptor+ NK cells were stable or elevated in viremic subjects, while the numbers of CD3-/CD56+/CD94+ and CD3-/CD56+/CD161+ NK cells were reduced. Taken together, these data demonstrate that viremic HIV-1 infection is associated with a reduction in NK cell numbers and a perturbation of NK cell subsets, but increased overall NK cell activity.  相似文献   

18.
Natural killer (NK) cells represent a highly specialized lymphoid population characterized by a potent cytolytic activity against tumor or virally infected cells. Their function is finely regulated by a series of inhibitory or activating receptors. The inhibitory receptors, specific for major histocompatibility complex (MHC) class I molecules, allow NK cells to discriminate between normal cells and cells that have lost the expression of MHC class I (e.g., tumor cells). The major receptors responsible for NK cell triggering are NKp46, NKp30, NKp44 and NKG2D. The NK-mediated lysis of tumor cells involves several such receptors, while killing of dendritic cells involves only NKp30. The target-cell ligands recognized by some receptors have been identified, but those to which major receptors bind are not yet known. Nevertheless, functional data suggest that they are primarily expressed on cells upon activation, proliferation or tumor transformation. Thus, the ability of NK cells to lyse target cells requires both the lack of surface MHC class I molecules and the expression of appropriate ligands that trigger NK receptors.  相似文献   

19.
Tumor recurrence rates remain high after curative treatments for hepatocellular carcinoma (HCC). Immunomodulatory agents, including chemokines, are believed to enhance the antitumor effects of tumor cell apoptosis induced by suicide gene therapy. We therefore evaluated the immunomodulatory effects of a bicistronic recombinant adenovirus vector (rAd) expressing both HSV thymidine kinase and MCP-1 on HCC cells. Using an athymic nude mouse model (BALB/c-nu/nu), primary s.c. tumors (HuH7; human HCC cells) were completely eradicated by rAd followed by treatment with ganciclovir. The same animals were subsequently rechallenged with HCC cells, tumor development was monitored, and the recruitment or activation of NK cells was analyzed immunohistochemically or by measuring IFN-gamma mRNA expression. Tumor growth was markedly suppressed as compared with that in mice treated with a rAd expressing the HSV thymidine kinase gene alone (p < 0.001). Suppression of tumor growth was associated with the elevation of serum IL-12 and IL-18. During suppression, NK cells were recruited exclusively, and Th1 cytokine gene expression was enhanced in tumor tissues. The antitumor activity, however, was abolished either when the NK cells were inactivated with anti-asialo GM1 Ab or when anti-IL-12 and anti-IL-18 Abs were administered. These results indicate that suicide gene therapy, together with delivery of MCP-1, eradicates HCC cells and exerts prolonged NK cell-mediated antitumor effects in a model of HCC, suggesting a plausible strategy to prevent tumor recurrence.  相似文献   

20.
Hyperthermia, which is used as an adjunctive therapy for cancer, is known to modulate the activity of natural killer (NK) cells in vitro, but its effect in vivo is unclear. In the present study, we used a whole body hyperthermia (WBH) device heated by infrared rays to evaluate the effect of WBH on mice models. We demonstrate here that wild type C57BL/6J mice exposed to 42 degrees C for 60min had reduced NK cell cytolytic activity against YAC-1 target cells as determined by cytolytic assay. This result was confirmed using Rag-2 knockout mice, which possess functional NK but not cytolytic T or NK-T cells. Moreover, WBH decreased the mRNA expression of perforin and granzyme B in spleens of mice. But the expression of TNF cytokines (Fas ligand and TRAIL) was unchanged. These data suggest that the suppression of NK cell activity induced by WBH could be mediated through the perforin/granzyme pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号