首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
YvgO is a recently characterized antifungal protein isolated from Bacillus thuringiensis SF361 that exhibits a broad spectrum of activity and pH stability. Customized colorimetric metabolic assays based on standard broth microdilution techniques were used to determine the variable tolerance of Byssochlamys fulva H25 and Candida albicans 3153A to YvgO exposure under select matrix conditions impacting cellular proliferation. Normalization of the solution pH after antifungal challenge expanded the available pH range under consideration allowing for a comprehensive in vitro assessment of YvgO efficacy. Indicator susceptibility was examined across an array of elementary growth-modifying conditions, including media pH, incubation temperature, ionic strength, and carbohydrate supplementation. Under suboptimal temperature and pH conditions, the indicator growth rate reduced, and YvgO-mediated susceptibility was attenuated. While YvgO association but not efficacy was somewhat influenced by solution ionic strength, carbohydrate supplementation was shown to be the most influential susceptibility factor, particularly for C. albicans. Although the specific choice of carbohydrate/nutrient supplement dictated the extent of enhanced YvgO efficacy, d-glucose additionally improved the association between antifungal and target. Indeed, when exposed to YvgO under conditions that lead to increased cellular proliferation, both indicators displayed a stronger association and susceptibility to YvgO when compared to carbohydrate-deprived media or suboptimal incubation environments. With further study, YvgO may have the capacity to function as a prophylaxis for food safety and preservation, as well as a pharmaceutical agent against opportunistic fungal pathogens either independently or in combination with other established treatments applied to both livestock and human health concerns.  相似文献   

2.
Aims:  Isolate and characterize antifungal peptides exhibiting activity against Byssochlamys fulva H25, a spoilage mould associated with juices and beverages.
Methods and Results:  A bacterium (H215) isolated from honey showed high antifungal activity against B. fulva H25. The antifungal producer strain was identified as Bacillus subtilis using 16S rDNA sequencing. The antifungal peptide was purified by 20% ammonium sulfate precipitation of the bacterial culture supernatant, followed by Octyl-Sepharose CL-4B and reverse phase-high performance liquid chromatography. The five active fractions were lyophilized and subjected to mass, tandem mass spectrometry and amino acid analysis to deduce their corresponding molecular masses and structural characteristics. The five peaks were determined to be identical to bacillomycin F, varying in the length of the fatty acid chain moiety from C14 to C16.
Conclusions:  The broad-spectrum antifungal activity produced by a bacterium from honey was determined to be due to the production of bacillomycin F.
Significance and Impact of the Study:  The antifungal compound produced by a bacterial strain isolated from honey was determined to be stable over a broad pH range and was stable to heat treatments up to 100°C. This is the first report of honey microflora producing bacillomycin F or any antifungal compound.  相似文献   

3.
The incidence of invasive fungal infections has dramatically increased for several decades. In order to discover novel antifungal agents with broad spectrum and anti-Aspergillus efficacy, a series of novel triazole derivatives containing 1,2,3-benzotriazin-4-one was designed and synthesized. Most of the compounds exhibited stronger in vitro antifungal activities against tested fungi than fluconazole. Moreover, 6m showed comparable antifungal activity against seven pathogenic strains as voriconazole and albaconazole, especially against Aspergillus fumigatus (MIC = 0.25 μg/ml), and displayed moderate antifungal activity against fluconazole-resistant strains of Candida albicans. A clear SAR study indicated that compounds with groups at the 7-position resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.  相似文献   

4.
Pleurocidin (Ple) is a 25-residue peptide which is derived from the skin mucous secretion of the winter flounder (Pleuronectes americanus). In this study, we investigated antifungal effects and its mode of action of Ple on human pathogenic fungi. Ple showed potent antifungal activity with low hemolytic activity. To investigate the antifungal mechanisms of Ple, the cellular localization and membrane interaction of Ple were examined. Protoplast regeneration and membrane-disrupting activity by DPH-labeled membrane support the idea, that Ple exerts fungicidal activity against the human pathogenic fungus Candida albicans with the disruption of a plasma membrane. To aim for which was the application of a therapeutic agent, we designed a synthetic enantiomeric peptide composed of all-d-amino acids to enhance proteolytic resistance. The synthetic all-d-Ple also displayed two-fold more potent antifungal activity than that of all-l-Ple, and its antifungal activity showed proteolytic resistance against various proteases. Therefore, these results suggest a therapeutic potential of all-d-Ple with regard to its proteolytic resistance against human fungal infections.  相似文献   

5.
N-Benzyl pyrrolidinyl sordaricin derivatives have been synthesized from cis-4-hydroxy-D-proline in a stereocontrolled manner. These compounds maintained moderate antifungal activity against several pathogenic fungal strains. Their MIC values against Candida albicans were in the range of 0.25-2 microg/mL.  相似文献   

6.
Park SW  Stevens NM  Vivanco JM 《Planta》2002,216(2):227-234
Ribosome-inactivating proteins (RIPs) are enzymes that cleave a specific adenine base from the highly conserved sarcin/ricin (S/R) loop of the large ribosomal RNA, thus arresting protein synthesis at the translocation step. In the present study, we employed three RIPs to dissect the antifungal activity of RIPs as plant defense proteins. We measured the catalytic activity of RAT (the catalytic A-chain of ricin from Ricinus communis L.), saporin-S6 (from Saponaria officinalis L.), and ME (RIP from Mirabilis expansa R&P) against intact ribosomal substrates isolated from various pathogenic fungi. We further determined the enzymatic specificity of these three RIPs against fungal ribosomes, from Rhizoctonia solani Kuhn, Alternaria solani Sorauer, Trichoderma reesei Simmons and Candida albicans Berkhout, and correlated the data with antifungal activity. RAT showed the strongest toxicity against all tested fungal ribosomes, except for the ribosomes isolated from C. albicans, which were most susceptible to saporin. RAT and saporin showed higher enzymatic activity than ME against ribosomes from all of the fungal species assayed, but did not show detectable antifungal activity. In contrast, ME showed substantial inhibitory activity against fungal growth. Using N-hydroxysuccinimide-fluorescein labeling of RIPs and fluorescence microscopy, we determined that ME was targeted to the surface of fungal cells and transferred into the cells. Thus, ME caused ribosome depurination and subsequent fungal mortality. In contrast, saporin did not interact with fungal cells, correlating with its lack of antifungal activity.  相似文献   

7.
A series of novel spiro[indole-thiazolidine]spiro[indole-pyran] derivatives were synthesized from N-(bromoalkyl)indol-2,3-diones via monospiro-bisindole intermediates; the two indole nuclei being connected via N-(CH(2))(n)-N linker. Synthesized compounds were evaluated for their antimicrobial activities in vitro against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, and Staphylococcus epidermis), four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Klebsiella pneumonia) as well as four fungi (Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, and Candida albicans) using Cup plate method. Bis spiro-indoles exhibited stronger antibacterial and antifungal efficiency than their corresponding mono spiro-indoles. Compound 10e, the most active derivative was shown to inhibit the growth of all bacterial strains and two fungal strains (A. niger and C. albicans).  相似文献   

8.
Prevention or cure of different illnesses through the use of plant latex is a worldwide known concept. The antifungal activity of Hancornia speciosa latex has been observed against Candida albicans. However, H. speciosa latex is not a sterile plant exudate and secondary metabolites produced by bacteria could be involved in fungal inhibition. In the present study, the bacterial communities of the latex from three H. speciosa trees were characterized using traditional plating and molecular methods. Twelve strains isolated from the latex samples were clustered into four groups by amplified ribosomal DNA restriction analysis (ARDRA). One representative of each group was sequenced and they were identified as belonging to the genera Bacillus, Klebsiella, Enterobacter and Escherichia. None of the 12 isolates showed antifungal activity against C. albicans. A lack of a microbial origin for the antifungal properties of latex was noted. DGGE profiles generated from each of the three latex samples showed unique patterns. Sequencing of the DGGE bands demonstrated the affiliation with the genera Klebsiella, Pantoea, Enterobacter and Burkholderia. In addition, clone libraries were generated and the phylogenetic distribution of the 50 analyzed clones was similar to that obtained using DGGE. The presence of some potential pathogens should be considered before using H. speciosa latex in folk medicine.  相似文献   

9.
Two new benzoquinones, heliotropinones A and B, have been isolated from the aerial parts of Heliotropium ovalifolium. Their structures were elucidated by spectrometric methods including high resolution electrospray ionization (ESI-HR), EI mass spectrometry, 1H, 13C and 2D NMR experiments. The two quinones demonstrated antifungal activities against Cladosporium cucumerinum and Candida albicans as well as antibacterial activity against Bacillus subtilis.  相似文献   

10.
目的:评价美浮特^R皮肤抗菌液对致足癣真菌皮肤癣菌和白念珠菌的体外抗真菌活性及抗真菌后效应。方法采用美国 CLSI M27-A3和 M38-A2方案测定美浮特皮肤抗菌液对足癣常见致病真菌的最低抑菌浓度( MIC);并以白念珠菌(ATCC90028)为指示菌测定美浮特皮肤抗菌液测定时间-杀菌曲线,同时测定其对白念珠菌的抗真菌后效应(post-antifungal effect,PAFE)。结果美浮特皮肤抗菌液对4属6种57株 MIC 的范围为1:40-1:160、MIC50为1:80、MIC90为1:40;对白念珠菌的 MIC 范围为1:40-1:80、对皮肤癣菌的 MIC 范围为1:40-1:160。该抗菌液具有很强的杀菌作用,且随着药物浓度的降低,杀菌速度和程度随之变化。该抗菌液对白念珠菌0.5MIC、MIC、2MIC 的 PAFE 分别为0.85 h、2.1 h、3.59 h;且 PAFE 时间的延长与药物浓度呈正相关。结论美浮特^R皮肤抗菌液对致病真菌皮肤癣菌、白念珠菌具有快速、有效、持续的杀菌作用,该抗菌液对皮肤癣菌较白念珠菌具有更强的抗真菌作用。且该抗菌液对白念珠菌具有较长时间的后效应,可以广泛应用于临床治疗皮肤癣菌及白念珠菌所致的感染。  相似文献   

11.
Antimicrobial activity of protease inhibitor isolated from Coccinia grandis (L.) Voigt. has been reported. A 14.3 kDa protease inhibitor (PI) was isolated and purified to homogeneity by ammonium sulfate precipitation (20-85% saturation), sephadex G-75, DEAE sepharose column and trypsin-sepharose affinity chromatography from the leaves of C. grandis. The purity was checked by reverse phase high performance liquid chromatography. PI exhibited marked growth inhibitory effects on colon cell lines in a dose-dependent manner. PI was thermostable and showed antimicrobial activity without hemolytic activity. PI strongly inhibited pathogenic microbial strains, including Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Eschershia coli, Bacillus subtilis and pathogenic fungus Candida albicans, Mucor indicus, Penicillium notatum, Aspergillus flavus and Cryptococcus neoformans. Examination by bright field microscopy showed inhibition of mycelial growth and sporulation. Morphologically, PI treated fungus showed a significant shrinkage of hyphal tips. Reduced PI completely lost its activity indicating that disulfide bridge is essential for its protease inhibitory and antifungal activity. Results reported in this study suggested that PI may be an excellent candidate for development of novel oral or other anti-infective agents.  相似文献   

12.
Abstract The mechanism of antifungal activity of lactoferrin (Lf) and ovotransferrin (OTR) towards Candida albicans and Candida krusei was studied. In low iron-content medium, in minimal medium supplemented by 2,2'-dipyridyl, and in a medium in which Lf or OTR were separated from the culture by a dialysis membrane, the growth of C. albicans and C. krusei was proportional to the endogenous iron. Differences were observed when Lf or OTR was in contact with the fungal cells: C. albicans was inhibited, whereas C. krusei was not. Direct fluorescence indicated binding of Lf and OTR only on C. albicans surfaces, and suggested that antifungal activity is not simply related to iron deprivation, but involves interaction of the protein with the fungal surface.  相似文献   

13.
The Aloe protein of 14 kDa from the Aloe vera leaf gel was isolated by an ion exchange chromatography using DEAE-cellulose and CM-cellulose column. The purified Aloe protein exhibited a potent anti-fungal activity against Candida paraprilosis, Candida krusei and Candida albicans. In addition, the purified Aloe protein also showed an anti-inflammatory property against pure lipoxygenase and cyclooxygenase-2 with 84% and 73% inhibition, respectively, and was verified by binding with these proteins by real time method by the phenomenon of surface plasmon resonance. This Aloe protein is a novel protein possessing antifungal and anti-inflammatory properties and thus sets a platform to be used as a medicinal plant product.  相似文献   

14.
Sulfonamides incorporated ferrocene (SIF) have been synthesized by the condensation reaction of sulfonamides (sulfanilamide, sulfathiazole or sulfamethaxazole) with 1,1'-diacetylferrocene. The synthesized compounds (SIF(1)-SIF(4)) have been characterized by their physical, spectral and analytical properties and have been screened for their in vitro antibacterial properties against pathogenic bacterial strains e.g., Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis Staphylococcus aureus and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using Agar-well diffusion method. Most of the compounds showed good antibacterial activity whereas, all the compounds exhibited significant antifungal activity. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina.  相似文献   

15.
Using a 24-hr radiolabel microassay developed in our laboratory that measures [3H]glucose uptake in residual Candida, we have identified the effector cells responsible for in vitro inhibition of Candida albicans growth as mainly polymorphonuclear neutrophils (PMN) and monocytes within the human peripheral blood cells. Highly purified T cells and large granular lymphocytes (LGL) that mediate natural killer activity which were obtained by Percoll density gradient centrifugation were found to have no innate activity against C. albicans. The LGL could not be activated by interferon-alpha, interferon-gamma or interleukin 2 to inhibit Candida growth although their K562 tumor cytotoxic activity was readily enhanced by these cytokines. Stimulation with heat-killed C. albicans also did not activate fungal growth inhibitory function in LGL and the supernatant of these activated LGL had no direct fungicidal activity. However, the activated LGL supernatant had the capability to enhance PMN function against C. albicans growth. Addition of recombinant human tumor necrosis factor, affinity-purified interferon-alpha, or interferon-gamma to PMN caused increased antifungal activity in PMN. However, antibodies to these cytokines had only a partial adverse effect on the ability of the activated LGL supernatant to stimulate PMN anti-Candida function. Therefore, the activated LGL supernatant appeared to contain a potent stimulator of PMN function which is as yet unidentified. These data indicate that LGL did not directly mediate anti-Candida activity but could indirectly influence C. albicans growth by activating PMN against the fungi through the release of a specific PMN-activating factor. Our findings therefore add another role to LGL which is the regulation of PMN function, the consequence of which is regulation of fungal immunity.  相似文献   

16.
There is an increasing interest in the development of therapeutic antibodies (Ab) to improve the control of fungal pathogens, but none of these reagents is available for clinical use. We previously described a murine monoclonal antibody (mAb 2G8) targeting β-glucan, a cell wall polysaccharide common to most pathogenic fungi, which conferred significant protection against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans in animal models. Transfer of this wide-spectrum, antifungal mAb into the clinical setting would allow the control of most frequent fungal infections in many different categories of patients. To this aim, two chimeric mouse-human Ab derivatives from mAb 2G8, in the format of complete IgG or scFv-Fc, were generated, transiently expressed in Nicotiana benthamiana plants and purified from leaves with high yields (approximately 50 mg Ab/kg of plant tissues). Both recombinant Abs fully retained the β-glucan-binding specificity and the antifungal activities of the cognate murine mAb against C. albicans. In fact, they recognized preferentially β1,3-linked glucan molecules present at the fungal cell surface and directly inhibited the growth of C. albicans and its adhesion to human epithelial cells in vitro. In addition, both the IgG and the scFv-Fc promoted C. albicans killing by isolated, human polymorphonuclear neutrophils in ex vivo assays and conferred significant antifungal protection in animal models of systemic or vulvovaginal C. albicans infection. These recombinant Abs represent valuable molecules for developing novel, plant-derived immunotherapeutics against candidiasis and, possibly, other fungal diseases.  相似文献   

17.
In this study, the antifungal activity of peptides extracted from Adenanthera pavonina seeds was assessed. Peptides were extracted and fractionated by DEAE-Sepharose chromatography. The non-retained D1 fraction efficiently inhibited the growth of the pathogenic fungi. This fraction was later further fractionated by reversed-phase chromatography, resulting in 23 sub-fractions. All separation processes were monitored by tricine-SDS-PAGE. Fractions H11 and H22 strongly inhibited the growth of Saccharomyces cerevisiae and Candida albicans. Fraction H11 caused 100% death in S. cerevisiae in an antimicrobial assay. The complete amino acid sequence of the peptide in fraction P2 was determined, revealing homology to plant defensins, which was named ApDef1. Peptides from fraction H22 were also sequenced.  相似文献   

18.
The effect of X irradiation on the survival time of animals experimentally infected with pathogenic fungi was studied, and the activity of antifungal agents in pre-irradiated hosts was evaluated. A 24-hr preinfection dose of X irradiation decreased the survival time of mice infected with Cryptococcus neoformans and Histoplasma capsulatum to a greater extent than Candida albicans or Blastomyces dermatitidis infections. Exposure to 400 r caused a significant reduction in the variation (S(2)) survival time of C. albicans or H. capsulatum mouse infections. A single 100-mg/kg dose of 5-fluorocytosine or amphotericin B administered within 24 hr postinfection significantly extended the survival time of mice infected with C. albicans. Delayed treatment with amphotericin B was effective against C. neoformans infections. Four 50-mg/kg doses of 5-fluorocytosine were more effective than a single 200-mg/kg dose against C. neoformans infections. A single dose of amphotericin B provided significant protection when administered 48 hr postinfection against B. dermatitidis in preirradiated mice. A single dose of saramycetin 48 hr postinfection was highly effective against H. capsulatum mouse infections. A 100-mg/kg dose of amphotericin B was only effective against this fungal pathogen when administered within 8 hr postinfection. In vivo activity of the antifungal agents studied was detected within 8 to 14 days. The relative in vivo activity of several antifungal agents indicated the importance of considering their individual pharmacological properties for optimum effectiveness. The experimental model used in this study should be useful for the detection and for the preclinical evaluation of new antifungal agents.  相似文献   

19.
A series of antibacterial and antifungal sulfonamide (sulfanilamide, sulfaguanidine, sulfamethaxozole, 4-aminoethylbenzene-sulfonamide and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide) derived chromones, previously reported as inhibitors of carbonic anhydrase, have been screened for in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexener) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. All compounds (1)-(5) showed significant antibacterial activity against all four Gram-negative species and both Gram-positive species. However, three of them, (1), (4) and (5), were found to be comparatively much more active compared to (2) and (3). Of these, (5) was found to be the most active one. For antifungal activity, generally compounds (1) and (2) showed significant activity against more than three strains whereas (3)-(5) also showed significant activity against varied fungal strains. In the brine shrimp bioassay for in-vitro cytotoxic properties, only two compounds, (4) and (5) displayed potent cytotoxic activity, LD50 = 2.732 x 10(-4)M) and LD50 = 2.290 x 10(-4)M) respectively, against Artemia salina.  相似文献   

20.
Liu Y  Chen Z  Ng TB  Zhang J  Zhou M  Song F  Lu F  Liu Y 《Peptides》2007,28(3):553-559
An antifungal protein, with a molecular mass of 41.9 kDa, and designated as bacisubin, was isolated from a culture of Bacillus subtilis strain B-916. The isolation procedure consisted of ion exchange chromatography on DEAE-Sepharose Fast Flow, and fast protein liquid chromatography on Phenyl Sepharose 6 Fast Flow and hydroxyapatite columns. The protein was adsorbed on all three chromatographic media. Bacisubin exhibited inhibitory activity on mycelial growth in Magnaporthe grisease, Sclerotinia sclerotiorum, Rhizoctonia solani, Alternaria oleracea, A. brassicae and Botrytis cinerea. The IC50 values of its antifungal activity toward the last four fungal species were 4.01 microM, 0.087 microM, 0.055 microM and 2.74 microM, respectively. Bacisubin demonstrated neither protease activity, nor protease inhibitory activity. However, it manifested ribonuclease and hemagglutinating activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号