首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jiang J  Lu J  Lu D  Liang Z  Li L  Ouyang S  Kong X  Jiang H  Shen B  Luo C 《PloS one》2012,7(5):e36660
The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes.  相似文献   

2.
3.
4.
Liu Y  Montminy M 《Cell metabolism》2006,3(6):387-388
The nuclear hormone receptor coactivator PGC-1alpha is a key regulator of gluconeogenic genes during fasting. In this issue of Cell Metabolism, Puigserver and colleagues (Lerin et al., 2006) report that the histone acetyltransferase GCN5 inhibits gluconeogenesis by acetylating and sequestering PGC-1alpha in nuclear foci.  相似文献   

5.
6.
Zheng Y  Mamdani F  Toptygin D  Brand L  Stivers JT  Cole PA 《Biochemistry》2005,44(31):10501-10509
PCAF and GCN5 are histone acetyltransferase (HAT) paralogs which play roles in the remodeling of chromatin in health and disease. Previously, a conformationally flexible loop in the catalytic domain had been observed in the X-ray structures of GCN5 in different liganded states. Here, the conformation and dynamics of this PCAF/GCN5 alpha5-beta6 loop was investigated in solution using tryptophan fluorescence. A mutant human PCAF HAT domain (PCAF(Wloop)) was created in which the natural tryptophan (Trp-514) remote from the alpha5-beta6 loop was replaced with tyrosine and a glutamate within the loop (Glu-641) was substituted with tryptophan. This PCAF(Wloop) protein exhibited catalytic parameters within 3-fold of those of the wild-type PCAF catalytic domain, suggesting that the loop mutation was not deleterious for HAT activity. While saturating CoASH induced a 30% quenching of Trp fluorescence in PCAF(Wloop), binding of the high-affinity bisubstrate analogue H3-CoA-20 led to a 2-fold fluorescence increase. These different effects correlate with the different alpha5-beta6 loop conformations seen previously in X-ray structures. On the basis of stopped-flow fluorescence studies, binding of H3-CoA-20 to PCAF(Wloop) proceeds via a rapid association step followed by a slower conformational change involving loop movement. Time-resolved fluorescence measurements support a model in which the alpha5-beta6 loop in the H3-CoA-20-PCAF(Wloop) complex exists in a narrower ensemble of conformations compared to free PCAF(Wloop). The relevance of loop dynamics to PCAF/GCN5 catalysis and substrate specificity are discussed.  相似文献   

7.
8.
9.
10.
hFis1, a novel component of the mammalian mitochondrial fission machinery   总被引:25,自引:0,他引:25  
The balance between the fission and fusion mechanisms regulate the morphology of mitochondria. In this study we have identified a mammalian protein that we call hFis1, which is the orthologue of the yeast Fis1p known to participate in yeast mitochondrial division. hFis1, when overexpressed in various cell types, localized to the outer mitochondrial membrane and induced mitochondrial fission. This event was inhibited by a dominant negative mutant of Drp1 (Drp1(K38A)), a major component of the fission apparatus. Fragmentation of the mitochondrial network by hFis1 was followed by the release of cytochrome c and ultimately apoptosis. Bcl-xL was able to block cytochrome c release and apoptosis but failed to prevent mitochondrial fragmentation. Our studies show that hFis1 is part of the mammalian fission machinery and suggest that regulation of the fission processes might be involved in apoptotic mechanisms.  相似文献   

11.
《Gene》1997,203(1):27-31
We recently cloned the murine 11-cis retinol dehydrogenase gene. A second gene, the murine GCN5L1 gene, was found to be situated upstream of the murine 11-cis retinol dehydrogenase gene. We have isolated and sequenced the complete coding sequence of the murine GCN5L1 gene. The distance between the 3′-end of the murine GCN5L1 gene and the 5′-end of the 11-cis retinol dehydrogenase gene is only 776 nt. The murine GCN5L1 gene consists of four exons encompassing approximately 3.5 kb of genomic DNA. Intron/exon splice sites conform to the GT/AG rule. The open reading frame consists of 375 nucleotides encoding a 14 kDa protein. The murine GCN5L1, like the human GCN5L1 protein, displays weak homology (27%) to yeast GCN5. The distance between the murine, human and bovine GCN5L1 and 11-cis retinol dehydrogenase genes appeared to be conserved.  相似文献   

12.
13.
14.
Amidoximes can be used as prodrugs for amidines and related functional groups to enhance their intestinal absorption. These prodrugs are reduced to their active amidines. Other N-hydroxylated structures are mutagenic or responsible for toxic effects of drugs and are detoxified by reduction. In this study, a N-reductive enzyme system of pig liver mitochondria using benzamidoxime as a model substrate was identified. A protein fraction free from cytochrome b5 and cytochrome b5 reductase was purified, enhancing 250-fold the minor benzamidoxime-reductase activity catalyzed by the membrane-bound cytochrome b5/NADH cytochrome b5 reductase system. This fraction contained a 35-kDa protein with homologies to the C-terminal domain of the human molybdenum cofactor sulfurase. Here it was demonstrated that this 35-kDa protein contains molybdenum cofactor and forms the hitherto ill defined third component of the N-reductive complex in the outer mitochondrial membrane. Thus, the 35-kDa protein represents a novel group of molybdenum proteins in eukaryotes as it forms the catalytic part of a three-component enzyme complex consisting of separate proteins. Supporting these findings, recombinant C-terminal domain of the human molybdenum cofactor sulfurase exhibited N-reductive activity in vitro, which was strictly dependent on molybdenum cofactor.  相似文献   

15.
Large-scale random cDNA sequencing projects have been started for several organisms and are a valuable tool for the analysis of quantitative and qualitative aspects of gene expression. However, the reliability of the obtained data is limited as most of the clones are only partially analysed on one strand. As a consequence the sequence entries derived from random cDNA sequencing projects usually comprise incomplete open reading frames. They nevertheless define complete and reliable coding sequences, if two prerequisites are fullfilled: (i) the clones encode very small proteins, and (ii) the clones have a high frequency in the cDNA-banks. The present study describes the use of cDNA databases for the identification of homologues of three low-molecular-weight subunits of the mitochondrial bc1 complex, termed the QCR6, QCR9 and QCR10 proteins. These polypeptides are only characterized for a small number of organisms, have a scarcely defined function and exhibit a low degree of structural conservation if compared between different species. Several clones were identified for each polypeptide by searches with TBLASTN using the known sequences as probes. Most of the database entries contain complete open reading frames and sequencing queries could be excluded due to the abundancy of the clones. Multiple sequence alignments are presented for all three polypeptides and consensus sequences are given which may provide a basis for the investigation of the proteins by site-directed mutagenesis.  相似文献   

16.
In rat liver mitochondria there exists an AMP-dephosphorylating activity which converts external 5'-AMP to adenosine. It exhibits a pH optimum of 7.5 and a Km(AMP) of 0.085 mM. Furthermore, this activity is stimulated by magnesium (Km = 0.5 mM) and seems to be not affected by low concentrations of ATP or ADP. From the characteristics of the enzyme the existence of a 5'-nucleotidase in rat liver mitochondria which is localized on the outer surface of the inner mitochondrial membrane was concluded. The enzyme may be important for the production of cellular adenosine.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号