共查询到20条相似文献,搜索用时 0 毫秒
1.
With the unique cell compartmentalization and the ability to simultaneously oxidize ammonium and reduce nitrite into nitrogen
gas, anaerobic ammonium-oxidizing (anammox) bacteria have challenged our recognitions of microorganism. The research conducted
on these bacteria has been extended from bench-scale tryouts to full-scale reactor systems. This review addresses the recently
discovered versatile properties of anammox bacteria and the applications and obstacles of implementing the anammox process
in ammonia-rich wastewater treatment. We also discuss the merits and drawbacks of traditional and anammox-based processes
for nitrogen removal and suggest areas for improvement. 相似文献
2.
van der Star WR van de Graaf MJ Kartal B Picioreanu C Jetten MS van Loosdrecht MC 《Applied and environmental microbiology》2008,74(14):4417-4426
Anaerobic ammonium oxidation is a recent addition to the microbial nitrogen cycle, and its metabolic pathway, including the production and conversion of its intermediate hydrazine, is not well understood. Therefore, the effect of hydroxylamine addition on the hydrazine metabolism of anaerobic ammonium-oxidizing (anammox) bacteria was studied both experimentally and by mathematical modeling. It was observed that hydroxylamine was disproportionated biologically in the absence of nitrite into dinitrogen gas and ammonium. Little hydrazine accumulated during this process; however, rapid hydrazine production was observed when nearly all hydroxylamine was consumed. A mechanistic model is proposed in which hydrazine is suggested to be continuously produced from ammonium and hydroxylamine (possibly via nitric oxide) and subsequently oxidized to N(2). The electron acceptor for hydrazine oxidation is hydroxylamine, which is reduced to ammonium. A decrease in the hydroxylamine reduction rate, therefore, leads to a decrease in the hydrazine oxidation rate, resulting in the observed hydrazine accumulation. The proposed mechanism was verified by a mathematical model which could explain and predict most of the experimental data. 相似文献
3.
Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria 总被引:1,自引:0,他引:1
Boran Kartal Laura van Niftrik Olav Sliekers Markus C. Schmid Ingo Schmidt Katinka van de Pas-Schoonen Irina Cirpus Wouter van der Star Mark van Loosdrecht Wiebe Abma J. Gijs Kuenen Jan-Willem Mulder Mike S. M. Jetten Huub Op den Camp Marc Strous Jack van de Vossenberg 《Reviews in Environmental Science and Biotechnology》2004,3(3):255-264
The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost effective way. As an alternative, the implementation of the anammox (anaerobic ammonium oxidation) process in the treatment of wastewater with high ammonium concentrations has been started. The compact anammox reactors can sustain high nitrogen loads without any problems. The highest observed anammox capacity is 8.9 kg N removed m-3 reactor day-1. The first 75 m3 anammox reactor is operating in Rotterdam, the Netherlands, combined with the partial nitrification process Single reaction system for High Ammonium Removal Over Nitrite (SHARON). Partial nitrification and anammox can also be combined in one reactor systems like Completely Autotrophic Nitrogen removal Over Nitrite (CANON) or Oxygen Limited Ammonium removal via Nitrification Denitrification (OLAND) where aerobic ammonium-oxidizing bacteria (AOB) and anammox bacteria cooperate under oxygen-limitation. These systems remove about 1.5 kg N m-3 reactor day-1. In addition to ammonium, urea can also be converted in the CANON system after a two-week adaptation period. The ecophysiological properties of the anammox bacteria make them very well suited to convert ammonium and nitrite. The Ks values for ammonium and nitrite are below 5 M. However, nitrite above 10 mM is detrimental for the anammox process, and oxygen reversibly inhibits the process at concentrations as low as 1 M. Acetate and propionate can be used by the anammox bacteria to convert nitrite and nitrate, whereas methanol and ethanol severely inhibit the anammox reaction. The enzyme hydroxylamine/hydrazine oxidoreductase (HAO), one of the key enzymes, is located in the anammoxosome, which is a membrane bound organelle. The membranes of the anammox bacteria contain unique ladderane lipids and hopanoids. The bacteria responsible for the anammox reaction are related to the Planctomycetes. The first anammox bacteria were isolated via Percoll centrifugation and characterized as Candidatus Brocadia anammoxidans. Survey of different wastewater treatment plants using anammox specific 16S rRNA gene primers and anammox specific oligonucleotide probes has revealed the presence of at least three other anammox bacteria, which have been tentatively named Candidatus Kuenenia stuttgartiensis, Candidatus Scalindua wagneri and Candidatus Scalindua brodae. A close relative of the latter, Candidatus Scalindua sorokinii was found to be responsible for about 50% of the nitrogen conversion in the anoxic zone of the Black Sea, making the anammox bacteria an important player in the oceanic nitrogen cycle. 相似文献
4.
Growth and metabolism characteristics of anaerobic ammonium-oxidizing bacteria aggregates 总被引:1,自引:0,他引:1
Ting-Ting Chen Ping Zheng Li-Dong Shen 《Applied microbiology and biotechnology》2013,97(12):5575-5583
The present study reported the growth and metabolism characteristics of anaerobic ammonium-oxidizing (anammox) bacteria aggregates in an expanded granular sludge bed (EGSB). The results showed that the anammox bacteria aggregates presented starvation, growth, and inhibition phase along with the increase of substrate supply. The substrate conversion rates for survival were 0.05 kgNH 4 + –N/(kgVSS·day), 0.07 kgNO 2 ? –N/(kgVSS·day), and 0.12 kgN/(kgVSS·day); the substrate conversion rates for maximum growth were 0.21 kgNH 4 + –N/(kgVSS·day), 0.24 kgNH 4 + –N/(kgVSS·day), and 0.45 kgNH 4 + –N/(kgVSS·day), respectively. In the growth phase, the yield of anammox bacteria aggregates was 0.14 gVSS/(gNH 4 + –N), 0.12 gVSS/(gNO 2 ? –N), and 0.70 gVSS/(gNO 3 ? –N); the yield of extracellular polymeric substances (EPS) was 0.11 gEPS/(gNH 4 + –N), 0.09 gEPS/(gNO 2 ? –N), and 0.55 gEPS/(gNO 3 ? –N), respectively. The EPS contents in anammox bacteria aggregates were high compared to that in anaerobic granular sludge. Speculated from the cell yield, the energy for anammox bacteria growth was not only from nitrite oxidation, but also from anammox reaction. 相似文献
5.
Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria 总被引:12,自引:0,他引:12
Güven D Dapena A Kartal B Schmid MC Maas B van de Pas-Schoonen K Sozen S Mendez R Op den Camp HJ Jetten MS Strous M Schmidt I 《Applied and environmental microbiology》2005,71(2):1066-1071
Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min(-1) mg of protein(-1)) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO(2), with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed. 相似文献
6.
Nakajima J Sakka M Kimura T Sakka K 《Bioscience, biotechnology, and biochemistry》2008,72(8):2195-2198
We identified 16S rRNA gene sequences in sediment samples from Ago Bay in Japan, forming a new branch of the anammox group or closely related to anaerobic ammonium oxidizing (anammox) bacterial sequences. Anammox activity in the sediment samples was detected by (15)N tracer assays. These results, along with the results of fluorescence in situ hybridization (FISH) analysis, suggest the presence of anammox bacteria in the marine sediments. 相似文献
7.
Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor 总被引:2,自引:0,他引:2
Quan ZX Rhee SK Zuo JE Yang Y Bae JW Park JR Lee ST Park YH 《Environmental microbiology》2008,10(11):3130-3139
The ammonium-oxidizing microbial community was investigated in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor that was operated for about 1 year with high anaerobic ammonium oxidation activity (up to 0.8 kg NH(4)(+)-N m(-3) day(-1)). A Planctomycetales-specific 16S rRNA gene library was constructed to analyse the diversity of the anaerobic ammonium-oxidizing bacteria (AnAOB). Most of the specifically amplified sequences (15/16) were similar to each other (> 99%) but were distantly related to all of the previously recognized sequences (< 94%), with the exception of an unclassified anammox-related clone, KSU-1 (98%). An ammonia monooxygenase (amoA) gene library was also analysed to investigate the diversity of 'aerobic' ammonium-oxidizing bacteria (AAOB) from the beta-Proteobacteria. Most of the amoA gene fragments (53/55) clustered in the Nitrosomonas europaea-Nitrosococcus mobilis group which has been reported to prevail under oxygen-limiting conditions. The quantitative results from real-time polymerase chain reaction (PCR) amplification showed that the dominant AnAOB comprised approximately 50% of the total bacterial 16S rRNA genes in the reactor, whereas the AAOB of beta-Proteobacteria represented only about 3%. A large fragment (4008 bp) of the rRNA gene cluster of the dominant AnAOB (AS-1) in this reactor sludge was sequenced and compared with sequences of other Planctomycetales including four anammox-related candidate genera. The partial sequence of hydrazine-oxidizing enzyme (hzo) of dominant AnAOB was also identified using new designed primers. Based on this analysis, we propose to tentatively name this new AnAOB Candidatus'Jettenia asiatica'. 相似文献
8.
Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor 总被引:8,自引:1,他引:8
The doubling time of anaerobic ammonium-oxidizing (anammox) bacteria in an anaerobic biological filtrated (ABF) reactor was
determined. Fluorescence in situ hybridization analysis was used to detect and count anammox bacteria cells in anammox sludge.
As a result, the populations of anammox bacteria at 14th and 21st days were 1.1×106 and 1.7×107 cells/ml reactor, respectively. From these results, the doubling time of anammox bacteria was calculated as 1.8 days, and
the specific growth rate (μ) was 0.39 day−1. This result indicated that the anammox bacteria have higher growth rate than the reported value (doubling time, 11 days).
Furthermore, it was clearly demonstrated that nitrogen conversion rate was proportional to the population of anammox bacteria.
Maintaining the ideal environment for the growth of anammox bacteria in the ABF reactor might lead to faster growth. This
is the first report of the growth rate of anammox bacteria based on the direct counting of anammox bacteria. 相似文献
9.
Proteins and protein complexes involved in the biochemical reactions of anaerobic ammonium-oxidizing bacteria 总被引:2,自引:0,他引:2
de Almeida NM Maalcke WJ Keltjens JT Jetten MS Kartal B 《Biochemical Society transactions》2011,39(1):303-308
It has been less than two decades since anammox (anaerobic ammonium oxidation) coupled to nitrite reduction has been discovered. Already, this process has been recognized as an important sink for fixed nitrogen in the natural environment and has been implemented as a cost-effective ammonium removal technology. Still, little is known about the molecular mechanism of this remarkable reaction. In this mini review, we present an insight into how ammonium and nitrite are combined to form dinitrogen gas. 相似文献
10.
Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria 总被引:12,自引:0,他引:12
Schmid MC Maas B Dapena A van de Pas-Schoonen K van de Vossenberg J Kartal B van Niftrik L Schmidt I Cirpus I Kuenen JG Wagner M Sinninghe Damsté JS Kuypers M Revsbech NP Mendez R Jetten MS Strous M 《Applied and environmental microbiology》2005,71(4):1677-1684
11.
Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria 总被引:1,自引:0,他引:1
Schouten S Strous M Kuypers MM Rijpstra WI Baas M Schubert CJ Jetten MS Sinninghe Damsté JS 《Applied and environmental microbiology》2004,70(6):3785-3788
Isotopic analyses of Candidatus "Brocadia anammoxidans," a chemolithoautotrophic bacterium that anaerobically oxidizes ammonium (anammox), show that it strongly fractionates against (13)C; i.e., lipids are depleted by up to 47 per thousand versus CO(2). Similar results were obtained for the anammox bacterium Candidatus "Scalindua sorokinii," which thrives in the anoxic water column of the Black Sea, suggesting that different anammox bacteria use identical carbon fixation pathways, which may be either the Calvin cycle or the acetyl coenzyme A pathway. 相似文献
12.
Yan J Op den Camp HJ Jetten MS Hu YY Haaijer SC 《Systematic and applied microbiology》2010,33(7):407-415
In oxygen-limited marine ecosystems cooperation between marine nitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria is of importance to nitrogen cycling. Strong evidence for cooperation between anammox bacteria and nitrifiers has been provided by environmental studies but little is known about the development of such communities, the effects of environmental parameters and the physiological traits of their constituents. In this study, a marine laboratory model system was developed. Cooperation between marine nitrifiers and anammox bacteria was induced by incremental exposure of a marine anammox community dominated by Scalindua species to oxygen in a bioreactor set-up under high ammonium (40 mM influent) conditions. Changes in the activities of the relevant functional groups (anammox bacteria, aerobic ammonia oxidizers and nitrite oxidizers) were monitored by batch tests. Changes in community composition were followed by Fluorescence in situ Hybridization (FISH) and by amplification and sequencing of 16S rRNA and amoA genes. A co-culture of Scalindua sp., an aerobic ammonia-oxidizing Nitrosomonas-like species, and an aerobic (most likely Nitrospira sp.) nitrite oxidizer was obtained. Aerobic ammonia oxidizers became active immediately upon exposure to oxygen and their numbers increased 60-fold. Crenarchaea closely related to the ammonia-oxidizer Candidatus 'Nitrosopumilus maritimus' were detected in very low numbers and their contribution to nitrification was assumed negligible. Activity of anammox bacteria was not inhibited by the increased oxygen availability. The developed marine model system proved an effective tool to study the interactions between marine anammox bacteria and nitrifiers and their responses to changes in environmentally relevant conditions. 相似文献
13.
Ammonium removal performance of anaerobic ammonium-oxidizing bacteria immobilized in polyethylene glycol gel carrier 总被引:1,自引:0,他引:1
Anaerobic ammonium-oxidizing (anammox) bacteria were immobilized in polyethylene glycol gel carriers. A small amount of seed sludge [0.24% (w/v)] was entrapped in the carriers, and continuous feeding tests were performed. Nitrogen removal activity increased gradually, reaching 3.7 kg N/m(3) reactor per day on day 67. The average of nitrogen conversion rate was calculated as 3.4 kg N/m(3) reactor per day. Microscopic examination clearly showed that small red clusters formed in the gel carrier. Moreover, fluorescence in situ hybridization analysis revealed that these clusters consisted of anammox bacteria. From real-time polymerase chain reaction analysis, the growth of anammox bacteria in the gel carriers was clearly shown by increased concentration of 16S rRNA gene of planctomycete from 4.3 x 10(8) to 4.2 x 10(9) copies/ml between days 41 and 55. To determine the effects of inoculation on the start-up of the reactor, the amount of seed sludge in the gel carrier was varied and it was found that the start-up period could be reduced to as little as 25 days when a sludge concentration of 1.4% (w/v) was used. This is the first report of successful immobilization and cultivation of anammox bacteria in a gel carrier. 相似文献
14.
Both β-proteobacterial aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (ANAMMOX) bacteria were investigated in the hyporheic zone of a contaminated river in China containing high ammonium levels and low chemical oxygen demand. Fluorescence in-situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and cloning-sequencing were employed in this study. FISH analysis illustrated that AOB (average population of 3.5?%) coexisted with ANAMMOX bacteria (0.7?%). The DGGE profile revealed a high abundance and diversity of bacteria at the water-air-soil interface rather than at the water-soil interface. The redundancy analysis correlated analysis showed that the diversity of ANAMMOX bacteria was positively related to the redox potential. The newly detected sequences of ANAMMOX organisms principally belonged to the genus Candidatus "Brocadia", while most ammonia monooxygenase subunit-A gene amoA sequences were affiliated with Nitrosospira and Nitrosomonas. These results suggest that the water-air-soil interface performs an important function in the nitrogen removal process and that the bioresources of AOB and ANAMMOX bacteria can potentially be utilized for the eutrophication of rivers. 相似文献
15.
Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments 总被引:3,自引:0,他引:3
Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of approximately 700-bp 16S rRNA gene sequences with >96% homology to the Candidatus Scalindua group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to Ca. Scalindua, Candidatus Brocadia, and Candidatus Kuenenia. This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments. 相似文献
16.
In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms 总被引:1,自引:0,他引:1
Kindaichi T Tsushima I Ogasawara Y Shimokawa M Ozaki N Satoh H Okabe S 《Applied and environmental microbiology》2007,73(15):4931-4939
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that "Brocadia"-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 microm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH(4)(+) and NO(2)(-) consumption rates decreased from 0.68 and 0.64 micromol cm(-2) h(-1) at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 micromol cm(-2) h(-1) at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH(4)(+) and NO(2)(-) and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O(2) or organic compounds, which consequently established suitable microenvironments for anammox bacteria. 相似文献
17.
The most striking example of a complex prokaryotic intracytoplasmic organization can be found in the members of the phylum Planctomycetes. Among them are the anammox (anaerobic ammonium-oxidizing) bacteria, which possess a unique cell compartment with an unprecedented function in bacteria: the anammoxosome is a prokaryotic cell organelle evolved for energy metabolism. It is an independent entity, which is enclosed by a contiguous membrane. Several lines of evidence indicate its importance in the anammox reaction and the unusual subcellular organization may well be essential for the lifestyle of anammox bacteria. The present review summarizes our knowledge about the ultrastructure of anammox cells and the connection between the anammoxosome and the energy metabolism of the cell. In the future, much more research will be necessary to validate the current models and to answer questions on the functional cell biology of anammox bacteria. 相似文献
18.
Schmid MC Hooper AB Klotz MG Woebken D Lam P Kuypers MM Pommerening-Roeser A Op den Camp HJ Jetten MS 《Environmental microbiology》2008,10(11):3140-3149
Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N(2). While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria. 相似文献
19.
Esculin hydrolysis is one of the biochemical tests used in the identification of anaerobic microorganisms. The conventional
method by use of growing microbial cells requires 24–48 hours of incubation. On the other hand, growth independent methods
like the buffered esculin test, the spot test, and the PathoTec strip test utilize the presence of constitutive enzymes and,
therefore, yield results in 1–4 hours. A total of 817 anaerobic organisms were used in this study to determine the sensitivity
and specificity of the three rapid methods. All three rapid methods gave excellent correlation with the standard conventional
method. Over 99% of the organisms gave comparable results with the spot test and the buffered esculin test within one hour;
the PathoTec strip test required up to 4 hours. The former two were not only more rapid but also more economical than the
PathoTec strip test. 相似文献
20.
Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China) 总被引:9,自引:0,他引:9
Zhang Y Ruan XH Op den Camp HJ Smits TJ Jetten MS Schmid MC 《Environmental microbiology》2007,9(9):2375-2382
Here we report on the biodiversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in sediment samples from the Xinyi River, Jinagsu Province (China). The biodiversity of aerobic ammonium-oxidizing bacteria in the sediment was assessed using the amoA gene as functional marker. The retrieved amoA clones were affiliated to environmental sequences from freshwater habitats. The closest cultivated relative was Nitrosomonas urea. Anaerobic ammonium-oxidizing (anammox) bacteria were studied using anammox and planctomycete-specific 16S rRNA gene primers. The sediments contained 16S rRNA genes and bacterial cells closely related to the known anammox bacterium Candidatus'Brocadia anammoxidans'. Anaerobic continuous flow reactors were set up to enrich anammox organisms from the sediments. After an adaptation period of about 25 days the reactors started to consume ammonium and nitrite, indicating that the anammox reaction was occurring with a rate of 41-58 nmol cm(-3) h(-1). Community analysis of the enrichments by quantitative fluorescence in situ hybridization showed an increase in the abundance of anammox bacteria from < 1% to 6 +/- 2% of the total population. Analysis of the 16S rRNA genes showed that the enriched anammox organisms were related to the Candidatus'Scalindua' genus. 相似文献