首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
According to epidemiological studies, type‐2 diabetes increases the risk of Alzheimer’s disease. Here, we induced hyperglycaemia in mice overexpressing mutant amyloid precursor protein and presenilin‐1 (APdE9) either by cross‐breeding them with pancreatic insulin‐like growth factor 2 (IGF‐2) overexpressing mice or by feeding them with high‐fat diet. Glucose and insulin tolerance tests revealed significant hyperglycaemia in mice overexpressing IGF‐2, which was exacerbated by high‐fat diet. However, sustained hyperinsulinaemia and insulin resistance were observed only in mice co‐expressing IGF‐2 and APdE9 without correlation to insulin levels in brain. In behavioural tests in aged mice, APdE9 was associated with poor spatial learning and the combination of IGF‐2 and high‐fat diet further impaired learning. Neither high‐fat diet nor IGF‐2 increased β‐amyloid burden in the brain. In male mice, IGF‐2 increased β‐amyloid 42/40 ratio, which correlated with poor spatial learning. In contrast, inhibitory phosphorylation of glycogen synthase kinase 3β, which correlated with good spatial learning, was increased in APdE9 and IGF‐2 female mice on standard diet, but not on high‐fat diet. Interestingly, high‐fat diet altered τ isoform expression and increased phosphorylation of τ at Ser202 site in female mice regardless of genotype. These findings provide evidence for new regulatory mechanisms that link type‐2 diabetes and Alzheimer pathology.  相似文献   

2.
3.
CD4(+)- and CD8(+)-T-cell death is a frequent immunological dysfunction associated with the development of human AIDS. We studied a murine model of AIDS, the CD4C/HIV transgenic (Tg) mouse model, to assess the importance of the apoptotic pathway in human immunodeficiency virus type 1 (HIV-1) pathogenesis. In these Tg mice, Nef is the major determinant of the disease and is expressed in immature and mature CD4(+) T cells and in cells of the macrophage/myeloid lineage. We report here a novel AIDS-like phenotype: enhanced death, most likely by apoptosis (as assessed by 7-aminoactinomycin D and annexin V/propidium iodide staining), of Tg thymic and peripheral CD4(+) and CD8(+) T cells. The Tg CD4(+) and CD8(+) T cells were also more susceptible to cell death after activation in vitro in mixed lymph node (LN) cultures. However, activation-induced cell death was not higher in Tg than in non-Tg-purified CD4(+) T cells. In addition, expression of Fas and FasL, assessed by flow cytometry, was increased in CD4(+) and CD8(+) T cells from Tg mice compared to that of non-Tg littermates. Despite the enhanced expression of Fas and FasL on Tg CD4(+) and CD8(+) T cells, Fas (lpr/lpr) and FasL (gld/gld) mutant CD4C/HIV Tg mice developed an AIDS-like disease indistinguishable from lpr/+ and gld/+ CD4C/HIV Tg mice, including loss of CD4(+) T cells. Similarly, CD4C/HIV Tg mice homozygous for mutations of two other genes implicated in cell death (interleukin-1beta-converting enzyme [ICE], tumor necrosis factor receptor 1 [TNFR-1]) developed similar AIDS-like disease as their respective heterozygous controls. Moreover, the double-Tg mice from a cross between the Bcl2/Wehi25 and CD4C/HIV Tg mice showed no major protection against disease. These results represent genetic evidence for the dispensable role of Fas, FasL, ICE, and TNFR-1 on the development of both T-cell loss and organ disease of these Tg mice. They also provide compelling evidence on the lack of protection by Bcl2 against Tg CD4(+)-T-cell death. In view of the high resemblance between numerous phenotypes observed in the CD4C/HIV Tg mice and in human AIDS, our findings are likely to be relevant for the human disease.  相似文献   

4.
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

5.
The neurosteroid allopregnanolone, a reduced metabolite of progesterone, induces anxiolytic effects by enhancing GABA(A) receptor function. Neuropeptide Y (NPY) and GABA are thought to interact functionally in the amygdala, and this interaction may be important in the regulation of anxiety. By using Y(1)R/LacZ transgenic mice, which harbour a fusion construct comprising the promoter of the mouse gene for the Y(1) receptor for NPY linked to the lacZ gene, we previously showed that long-term treatment with benzodiazepine receptor ligands modulates Y(1) receptor gene expression in the medial amygdala. We have now investigated the effects of prolonged treatment with progesterone or allopregnanolone on Y(1)R/LacZ transgene expression, as determined by quantitative histochemical analysis of beta-galactosidase activity. Progesterone increased both the cerebrocortical concentration of allopregnanolone and beta-galactosidase expression in the medial amygdala. Finasteride, a 5alpha-reductase inhibitor, prevented both of these effects. Long-term administration of allopregnanolone also increased both the cortical concentration of this neurosteroid and transgene expression in the medial amygdala. Treatment with neither progesterone nor allopregnanolone affected beta-galactosidase activity in the medial habenula. These data suggest that allopregnanolone regulates Y(1) receptor gene expression through modulation of GABA(A) receptor function, and they provide further support for a functional interaction between GABA and neuropeptide Y in the amygdala.  相似文献   

6.
Alzheimer's disease (AD) is a neurodegenerative disorder that represents the most common type of dementia among elderly people. Amyloid beta (Aβ) peptides in extracellular Aβ plaques, produced from the amyloid precursor protein (APP) via sequential processing by β‐ and γ‐secretases, impair hippocampal synaptic plasticity, and cause cognitive dysfunction in AD patients. Here, we report that Aβ peptides also impair another form of synaptic plasticity; cerebellar long‐term depression (LTD). In the cerebellum of commonly used AD mouse model, APPswe/PS1dE9 mice, Aβ plaques were detected from 8 months and profound accumulation of Aβ plaques was observed at 18 months of age. Biochemical analysis revealed relatively high levels of APP protein and Aβ in the cerebellum of APPswe/PS1dE9 mice. At pre‐Aβ accumulation stage, LTD induction, and motor coordination are disturbed. These results indicate that soluble Aβ oligomers disturb LTD induction and cerebellar function in AD mouse model.

  相似文献   


7.
8.
Myeloperoxidase‐specific anti‐neutrophil cytoplasmic antibody (MPO–ANCA) is associated with rapidly progressive glomerulonephritis (RPGN) and glomerular crescent formation. Pathogenic factors in RPGN were analyzed by using SCG/Kj mice, which spontaneously develop MPO–ANCA‐associated RPGN. The serum concentration of soluble IL‐6R was determined by using ELISA and those of another 23 cytokines and chemokines by Bio‐Plex analysis. Sections of frozen kidney tissue were examined by fluorescence microscopy and the CD3+B220+ T cell subset in the spleen determined by a flow cytometry. Concentrations of IL‐6 and monocyte chemotactic protein‐1 were significantly correlated with the percentages of crescent formation. Anti‐IL‐6R antibody, which has been effective in patients with rheumatoid arthritis, was administered to SCG/Kj mice to elucidate the role of IL‐6 in the development of RPGN. MPO–ANCA titers decreased after administration of anti‐IL‐6R antibody, but not titers of mizoribine, which is effective in Kawasaki disease model mice. These results suggest that IL‐6‐mediated signaling is involved in the production of MPO–ANCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号