首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A decreased clearance of apoptotic cells (efferocytosis) by alveolar macrophages (AM) may contribute to inflammation in emphysema. The up-regulation of ceramides in response to cigarette smoking (CS) has been linked to AM accumulation and increased detection of apoptotic alveolar epithelial and endothelial cells in lung parenchyma. We hypothesized that ceramides inhibit the AM phagocytosis of apoptotic cells. Release of endogenous ceramides via sphingomyelinase or exogenous ceramide treatments dose-dependently impaired apoptotic Jurkat cell phagocytosis by primary rat or human AM, irrespective of the molecular species of ceramide. Similarly, in vivo augmentation of lung ceramides via intratracheal instillation in rats significantly decreased the engulfment of instilled target apoptotic thymocytes by resident AM. The mechanism of ceramide-induced efferocytosis impairment was dependent on generation of sphingosine via ceramidase. Sphingosine treatment recapitulated the effects of ceramide, dose-dependently inhibiting apoptotic cell clearance. The effect of ceramide on efferocytosis was associated with decreased membrane ruffle formation and attenuated Rac1 plasma membrane recruitment. Constitutively active Rac1 overexpression rescued AM efferocytosis against the effects of ceramide. CS exposure significantly increased AM ceramides and recapitulated the effect of ceramides on Rac1 membrane recruitment in a sphingosine-dependent manner. Importantly, CS profoundly inhibited AM efferocytosis via ceramide-dependent sphingosine production. These results suggest that excessive lung ceramides may amplify lung injury in emphysema by causing both apoptosis of structural cells and inhibition of their clearance by AM.  相似文献   

2.
The phagocytosis of apoptotic inflammatory cells by alveolar macrophages (AMs) is a key component of inflammation resolution within the air space. Surfactant protein A (SP-A) has been shown to stimulate the phagocytosis of apoptotic neutrophils (PMNs) by normal AMs. We hypothesized that SP-A promotes the resolution of alveolar inflammation by enhancing apoptotic PMN phagocytosis and anti-inflammatory cytokine release by inflammatory AMs. Using an LPS lung inflammation model, we determined that SP-A stimulates the phagocytosis of apoptotic PMNs threefold by normal AMs and AMs isolated after LPS injury. Furthermore, SP-A enhances transforming growth factor-beta1 (TGF-beta1) release from both AM populations. Inflammatory AMs release twofold more TGF-beta1 in culture than do normal AMs. SP-A and apoptotic PMNs together stimulate TGF-beta1 release equivalently from normal and inflammatory cultured AMs (330% of unstimulated release by normal AMs). In summary, SP-A enhances apoptotic PMN uptake, stimulates AM TGF-beta1 release, and modulates the amount of TGF-beta1 released when AMs phagocytose apoptotic PMNs. These findings support the hypothesis that SP-A promotes the resolution of alveolar inflammation.  相似文献   

3.
Apoptotic cell removal (efferocytosis) is an essential process in the regulation of inflammation and tissue repair. We have shown that monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) enhances efferocytosis by alveolar macrophages in murine bacterial pneumonia. However, the mechanism by which MCP-1 exerts this effect remains to be determined. Here we explored that hypothesis that MCP-1 enhances efferocytosis through a Rac1/phosphatidylinositol 3-kinase (PI3-kinase)-dependent mechanism.We assessed phagocytosis of apoptotic cells by MCP-1 treated murine macrophages in vitro and in vivo. Rac activity in macrophages was measured using a Rac pull down assay and an ELISA based assay (GLISA). The downstream Rac1 activation pathway was studied using a specific Rac1 inhibitor and PI3-kinase inhibitor in in vitro assays.MCP-1 enhanced efferocytosis of apoptotic cells by murine alveolar macrophages (AMs), peritoneal macrophages (PMs), the J774 macrophage cell line (J774s) in vitro, and murine AMs in vivo. Rac1 activation was demonstrated in these cell lines. The effect of MCP-1 on efferocytosis was completely negated by the Rac1 inhibitor and PI3-kinase inhibitor.We demonstrated that MCP-1 enhances efferocytosis in a Rac1-PI3 kinase-dependent manner. Therefore, MCP-1-Rac1-PI3K interaction plays a critical role in resolution of acute lung inflammation.  相似文献   

4.
Mycobacterium tuberculosis bacilli are intracellular organisms that reside in phagosomes of alveolar macrophages (AMs). To determine the in vivo role of AM depletion in host defense against M. tuberculosis infection, mice with pulmonary tuberculosis induced by intranasal administration of virulent M. tuberculosis were treated intranasally with either liposome-encapsulated dichloromethylene diphosphonate (AM(-) mice), liposomes, or saline (AM(+) mice). AM(-) mice were completely protected against lethality, which was associated with a reduced outgrowth of mycobacteria in lungs and liver, and a polarized production of type 1 cytokines in lung tissue, and by splenocytes stimulated ex vivo. AM(-) mice displayed deficient granuloma formation, but were more capable of attraction and activation of T cells into the lung and had increased numbers of pulmonary polymorphonuclear cells. These data demonstrate that depletion of AMs is protective during pulmonary tuberculosis.  相似文献   

5.
GM-CSF gene-targeted (GM(-/-)) mice have impaired pulmonary clearance of bacterial and fungal pathogens by alveolar macrophages (AMs). Because AMs also clear adenovirus from the lung, the role of GM-CSF in endocytic internalization of adenovirus by AMs was evaluated. Pulmonary clearance of adenovirus was severely impaired in GM(-/-) mice compared to wild-type (GM(+/+)) mice as determined by Southern analysis of viral DNA. Internalization of adenovirus by AMs was deficient in GM(-/-) mice in vivo and in vitro as determined by uptake of fluorescently labeled adenovirus or by PCR quantification of adenoviral DNA internalized within AMs. An AM cell line previously established from GM(-/-) mice (mAM) had impaired internalization of adenovirus and transferrin-coated 100-nm latex beads compared to MH-S, a GM(+/+) AM cell line. Phagocytosis of 4- micro m latex beads was also impaired in mAM cells as determined by confocal and fluorescence microscopy. Retroviral vector-mediated reconstitution of PU.1 expression in cultured GM(-/-) AMs restored phagocytosis of 4- micro m beads, endocytosis of adenovirus, and transferrin-coated 100-nm beads (independent of integrin alpha(V) and transferrin receptors, respectively), and restored normal cytoskeletal organization, filamentous actin distribution, and stimulated formation of filopodia. Interestingly, mRNA for the phosphoinositide 3 kinase p110gamma isoform, important in macrophage phagocytic function, was absent in GM(-/-) AMs and was restored by PU.1 expression. These data show that GM-CSF, via PU.1, regulates endocytosis of small ( approximately 100 nm) pathogens/inert particles and phagocytosis of very large inert particles and suggests regulation of cytoskeletal organization by GM-CSF/PU.1 as the molecular basis of this control.  相似文献   

6.
Phosphatidylserine (PS) and oxidized PS species have been identified as key ligands on apoptotic cells important for their recognition and removal (efferocytosis) by phagocytes, a requisite step for resolution of inflammation. We have recently demonstrated that lysophosphatidylserine (lyso-PS) generated and retained on neutrophils following short term activation of the NADPH oxidase in vitro and in vivo enhanced their clearance via signaling through the macrophage G-protein-coupled receptor G2A. Here, we investigated the signaling pathway downstream of G2A. Lyso-PS, either made endogenously in apoptosing neutrophils or supplied exogenously in liposomes along with lyso-PS(neg) apoptotic cells, signaled to macrophages in a G2A-dependent manner for their enhanced production of prostaglandin E2 (PGE2) via a calcium-dependent cytosolic phospholipase A2/cyclooxygenase-mediated mechanism. Subsequent signaling by PGE2 via EP2 receptors activated macrophage adenylyl cyclase and protein kinase A. These events, in turn, culminated in enhanced activity of Rac1, resulting in an increase in both the numbers of macrophages efferocytosing apoptotic cells and the numbers of cells ingested per macrophage. These data were surprising in light of previous reports demonstrating that signaling by PGE2 and adenylyl cyclase activation are associated with macrophage deactivation and inhibition of apoptotic cell uptake. Further investigation revealed that the impact of this pathway, either the enhancement or inhibition of efferocytosis, was exquisitely sensitive to concentration effects of these intermediaries. Together, these data support the hypothesis that lyso-PS presented on the surface of activated and dying neutrophils provides a tightly controlled, proresolution signal for high capacity clearance of neutrophils in acute inflammation.  相似文献   

7.
Neutrophil infiltration is the first step in eradication of bacterial infection, but neutrophils rapidly die after killing bacteria. Subsequent accumulation of macrophage lineage cells, such as alveolar macrophages (AMs), is essential to remove dying neutrophils, which are a source of injurious substances. Macrophage lineage cells can promote tissue repair, by producing potential growth factors including hepatocyte growth factor (HGF). However, it remains elusive which factor activates macrophage in these processes. Intratracheal instillation of Pseudomonas aeruginosa caused neutrophil infiltration in the airspace; subsequently, the numbers of total AMs and neutrophil ingested AMs were increased. Bronchoalveolar lavage (BAL) fluid levels of monocyte chemoattractant protein (MCP)-1/CC chemokine ligand-2 (CCL2), a potent macrophage-activating factor, were increased before the increases in the number of AM ingesting neutrophils and HGF levels in BAL fluid. Immunoreactive MCP-1 proteins were detected in alveolar type II epithelial cells and AMs only after P. aeruginosa infection. The administration of anti-MCP-1/CCL2 Abs reduced the increases in the number of AM-ingesting neutrophils and HGF levels in BAL fluid, and eventually aggravated lung tissue injury. In contrast, the administration of MCP-1/CCL2 enhanced the increases in the number of AM ingesting neutrophils and HGF levels in BAL fluid, and eventually attenuated lung tissue injury. Furthermore, MCP-1/CCL2 enhanced the ingestion of apoptotic neutrophils and HGF production by a mouse macrophage cell line, RAW 267.4, in a dose-dependent manner. Collectively, MCP-1/CCL2 has a crucial role in the resolution and repair processes of acute bacterial pneumonia by enhancing the removal of dying neutrophils and HGF production by AMs.  相似文献   

8.
Apoptotic capacity of pulmonary tissue to produce or remove apoptotic cells by alveolar macrophages (ALMs) was investigated in three groups: healthy volunteers, smokers and patients with non-small-cell lung cancer (NSCLC). Differential cell counting of bronchoalveolar lavage (BAL) specimens revealed significantly higher percentages of neutrophils and eosinophils and decreased percentage of macrophages in BAL of patients with NSCLC in comparison with nonsmokers and smokers. Proportion of lymphocytes was significantly higher in patients with NSCLC than in smokers. These changes in the BAL cell profile may reflect immunology of the lung in pulmonary malignancies. BAL eosinophils were significantly lower and AMs increased in smokers in comparison with nonsmokers. This result might be understood as a consequence of changed tissue architecture of pulmonary tissue in situ, influenced by smoking. Apoptotic detection in cytocentrifuge preparations of BAL cell suspensions was evaluated by TUNEL method. Subsequent steps, adsorption, internalization and digestion of apoptotic cells by alveolar macrophages (AMs) were estimated by semiquantitative cytochemical scoring and indexing method and correlated with percent of free apoptotic cells. Significant increase of apoptotic capacity of pulmonary tissue in control smokers (289.55+/-50.77) in comparison with that of non-smokers (218.29+/-56.24) could be a consequence of stimulated digestion inside the AMs; decreased apoptotic capacity of pulmonary tissue in NSCLC (150.30+/-40.61; p<0.05), in comparison with non-smokers and smokers is in relation to a reduced phagocytosis of the apoptotic remnants, which might be either the cause or the consequence of the oncogenic process.  相似文献   

9.
Removal of cells dying by apoptosis is essential to normal development, maintenance of tissue homeostasis, and resolution of inflammation. Surfactant protein A (SP-A) and surfactant protein D (SP-D) are high abundance pulmonary collectins recently implicated in apoptotic cell clearance in vitro. Other collectins, such as mannose-binding lectin and the collectin-like C1q, have been shown to bind to apoptotic cells and drive ingestion through interaction with calreticulin and CD91 on the phagocyte in vitro. However, only C1q has been shown to enhance apoptotic cell uptake in vivo. We sought to determine the relative importance of SP-A, SP-D, and C1q in pulmonary clearance of apoptotic cells using knockout and overexpressing mice, and to determine the role of calreticulin and CD91 in this process. SP-A, SP-D, and C1q all enhanced apoptotic cell ingestion by resident murine and human alveolar macrophages in vitro. However, only SP-D altered apoptotic cell clearance from the naive murine lung, suggesting that SP-D plays a particularly important role in vivo. Similar to C1q and mannose-binding lectin, SP-A and SP-D bound to apoptotic cells in a localized, patchy pattern and drove apoptotic cell ingestion by phagocytes through a mechanism dependent on calreticulin and CD91. These results suggest that the entire collectin family of innate immune proteins (including C1q) works through a common receptor complex to enhance removal of apoptotic cells, and that collectins are integral, organ-specific components of the clearance machinery.  相似文献   

10.
Clearance of apoptotic cells is necessary for tissue development, homeostasis and resolution of inflammation. The uptake of apoptotic cells is initiated by an 'eat-me' signal, such as phosphatidylserine, on the cell surface and phagocytes recognize the signal by using specific receptors. In this study, we show that the soluble form of the receptor for advanced glycation end products (RAGE) binds to phosphatidylserine as well as to the apoptotic thymocytes. RAGE-deficient (Rage(-/-)) alveolar macrophages showed impaired phagocytosis of apoptotic thymocytes and defective clearance of apoptotic neutrophils in Rage(-/-) mice. Our results indicate that RAGE functions as a phosphatidylserine receptor and assists in the clearance of apoptotic cells.  相似文献   

11.
The lung environment actively inhibits apoptotic cell (AC) uptake by alveolar macrophages (AM?s) via lung collectin signaling through signal regulatory protein α (SIRPα). Even brief glucocorticoid (GC) treatment during maturation of human blood monocyte-derived or murine bone marrow-derived macrophages (M?s) increases their AC uptake. Whether GCs similarly impact differentiated tissue M?s and the mechanisms for this rapid response are unknown and important to define, given the widespread therapeutic use of inhaled GCs. We found that the GC fluticasone rapidly and dose-dependently increased AC uptake by murine AM?s without a requirement for protein synthesis. Fluticasone rapidly suppressed AM? expression of SIRPα mRNA and surface protein, and also activated a more delayed, translation-dependent upregulation of AC recognition receptors that was not required for the early increase in AC uptake. Consistent with a role for SIRPα suppression in rapid GC action, murine peritoneal M?s that had not been exposed to lung collectins showed delayed, but not rapid, increase in AC uptake. However, pretreatment of peritoneal M?s with the lung collectin surfactant protein D inhibited AC uptake, and fluticasone treatment rapidly reversed this inhibition. Thus, GCs act not only by upregulating AC recognition receptors during M? maturation but also via a novel rapid downregulation of SIRPα expression by differentiated tissue M?s. Release of AM?s from inhibition of AC uptake by lung collectins may, in part, explain the beneficial role of inhaled GCs in inflammatory lung diseases, especially emphysema, in which there is both increased lung parenchymal cell apoptosis and defective AC uptake by AM?s.  相似文献   

12.
Metalloelastase (MMP-12), mainly produced by macrophages, has been shown to play a key role in the pathogenesis of emphysema in animal models. Chronic cigarette smoke increases pulmonary MMP-12, which is closely correlated with an elevation of pulmonary substance P (SP). Because alveolar macrophages (AMs) contain the neurokinin-1 receptor (NK1R), we tested whether SP was able to trigger the upregulation of MMP-12 synthesis in AMs by acting on the NK1R. AMs isolated from bronchoalveolar lavage cells in C3H/HeN mice were cultured with control medium or SP that was coupled without or with NK1R antagonists (CP-99,994 or aprepitant) for 24 h. We found that SP significantly increased the mRNA of MMP-12 and NK1R by 11-fold and 82%, respectively, in AMs (P<0.05), and these responses were abolished by NK1R antagonists with little change in the cells' viability. Because pulmonary SP is primarily released by bronchopulmonary C-fibers (PCFs), we further asked whether destruction of PCFs would reduce SP and MMP-12. Two groups of mice were pretreated with vehicle and neonatal capsaicin (NCAP) to degenerate PCFs, respectively. Our results show that NCAP treatment significantly decreased mRNA and protein levels of SP associated with a reduction NK1R and MMP-12 in the lungs and AMs. These findings suggest that SP has a modulatory effect on pulmonary MMP-12 by acting on NK1R to trigger MMP-12 syntheses in the AMs.  相似文献   

13.
Surfactant protein A (SP-A) is an innate immune molecule that binds foreign organisms that invade the lungs and targets them for phagocytic clearance by the resident pulmonary phagocyte, the alveolar macrophage (AM). We hypothesized that SP-A binds to and enhances macrophage uptake of other nonself particles, specifically apoptotic polymorphonuclear neutrophils (PMNs). PMNs are recruited into the lungs during inflammation, but as inflammation is resolved, PMNs undergo apoptosis and are phagocytosed by AMs. We determined that SP-A increases AM phagocytosis of apoptotic PMNs 280 +/- 62% above the no protein control value. The increase is dose dependent, and heat-treated SP-A still enhanced uptake, whereas deglycosylated SP-A had significantly diminished ability to enhance phagocytosis. Surfactant protein D also increased phagocytosis of apoptotic PMNs by approximately 125%. However, other proteins that are structurally homologous to SP-A, mannose-binding lectin and complement protein 1q, did not. SP-A enhances phagocytosis via an opsonization-dependent mechanism and binds apoptotic PMNs approximately 4-fold more than viable PMNs. Also, binding of SP-A to apoptotic PMNs does not appear to involve SP-A's lectin domain. These data suggest that the pulmonary collectins SP-A and SP-D facilitate the resolution of inflammation by accelerating apoptotic PMN clearance.  相似文献   

14.
In chronic obstructive pulmonary disease (COPD/emphysema) we have shown a reduced ability of lung and alveolar (AM) macrophages to phagocytose apoptotic cells (defective ‘efferocytosis’), associated with evidence of secondary cellular necrosis and a resultant inflammatory response in the airway. It is unknown whether this defect is present in cancer (no COPD) and if so, whether this results from soluble mediators produced by cancer cells.We investigated efferocytosis in AM (26 controls, 15 healthy smokers, 37 COPD, 20 COPD+ non small cell lung cancer (NSCLC) and 8 patients with NSCLC without COPD) and tumor and tumor-free lung tissue macrophages (21 NSCLC with/13 without COPD). To investigate the effects of soluble mediators produced by lung cancer cells we then treated AM or U937 macrophages with cancer cell line supernatant and assessed their efferocytosis ability. We qualitatively identified Arachidonic Acid (AA) metabolites in cancer cells by LC-ESI-MSMS, and assessed the effects of COX inhibition (using indomethacin) on efferocytosis.Decreased efferocytosis was noted in all cancer/COPD groups in all compartments. Conditioned media from cancer cell cultures decreased the efferocytosis ability of both AM and U937 macrophages with the most pronounced effects occurring with supernatant from SCLC (an aggressive lung cancer type). AA metabolites identified in cancer cells included PGE2. The inhibitory effect of PGE2 on efferocytosis, and the involvement of the COX-2 pathway were shown.Efferocytosis is decreased in COPD/emphysema and lung cancer; the latter at least partially a result of inhibition by soluble mediators produced by cancer cells that include PGE2.  相似文献   

15.
Studies of apoptotic cell uptake by phagocytes in vitro have implicated a number of different receptors capable of mediating ingestion. However, there is currently little evidence for involvement of any of these candidate receptors in vivo. Previously, we have shown by the use of a blocking mAb against the class A scavenger receptor (SR-A) and thymic macrophages prepared from SR-A null mice, that this receptor is responsible for approximately 50% of the uptake of apoptotic thymocytes in vitro. In this study we have investigated the frequency of dying cells in the thymus of mice lacking SR-A. Our inability to demonstrate increased frequencies of nonphagocytosed Annexin V+, TUNEL+, or propidium iodide+ apoptotic thymocytes suggests there is no deficiency in apoptotic thymocyte clearance in these mice. Even when the rate of thymocyte apoptosis was increased by exposure of receptor-deficient mice to gamma irradiation, we did not detect a difference in the numbers of dying cells compared with similarly treated wild-type animals. This provides the first direct evidence of redundancy in apoptotic cell clearance mechanisms in vivo.  相似文献   

16.
Despite overlapping structural aspects with other phospholipids, lysophosphatidylserine (lysoPS), the monoacyl derivative of phosphatidylserine (diacylPS), appears to exert unique signaling characteristics important in both the early stages of initiating acute inflammation and in the orchestration of its resolution. LysoPS has long been known as a signaling phospholipid in mast cell biology, markedly enhancing stimulated histamine release and eicosanoid production. More recently, there has been a resurgence of interest in lysoPS as new roles in the promotion of phagocytosis of apoptotic cells, so-called efferocytosis, and resolution of inflammation have been identified. With regard to the latter, lysoPS generated in/on activated or aged apoptotic neutrophils enhances their clearance by macrophages via signaling through the macrophage G-protein coupled receptor G2A. In macrophages, this early acting pathway results in PKA-dependent augmentation of Rac1 activity via increased production of PGE? and cAMP. As such, macrophages stimulated with lysoPS demonstrate significantly increased efferocytic capacity necessary to clear large numbers of recruited neutrophils typical of acute inflammation. Given that clearance of these cells is critical for restoration of tissue function, lysoPS, as a pro-resolving lipid mediator, is hypothesized to play a key role in promoting timely resolution of inflammation. This article will review our current knowledge of lysoPS biology including receptor signaling and mechanisms of generation as well as summarize the more recent evidence of its expanding roles in inflammation.  相似文献   

17.
Human alveolar macrophages (AMs) phagocytose Pneumocystis (Pc) organisms predominantly through mannose receptors, although the molecular mechanism mediating this opsonin-independent process is not known. In this study, using AMs from healthy individuals, Pc phagocytosis was associated with focal F-actin polymerization and Cdc42, Rac1, and Rho activation in a time-dependent manner. Phagocytosis was primarily dependent on Cdc42 and RhoB activation (as determined by AM transfection with Cdc42 and RhoB dominant-negative alleles) and mediated predominantly through mannose receptors (as determined by siRNA gene silencing of AM mannose receptors). Pc also promoted PAK-1 phosphorylation, which was also dependent on RhoGTPase activation. HIV infection of AMs (as a model for reduced mannose receptor expression and function) was associated with impaired F-actin polymerization, reduced Cdc42 and Rho activation, and markedly reduced PAK-1 phosphorylation in response to Pc organisms. In healthy AMs, Pc phagocytosis was partially dependent on PAK activation, but dependent on the Rho effector molecule ROCK. These data provide a molecular mechanism for AM mannose receptor-mediated phagocytosis of unopsonized Pc organisms that appears distinct from opsonin-dependent phagocytic receptors. Reduced AM mannose receptor-mediated Cdc42 and Rho activation in the context of HIV infection may represent a mechanism that contributes to the pathogenesis of opportunistic pneumonia.  相似文献   

18.
In vivo, apoptotic cells are removed by surrounding phagocytes, a process thought to be essential for tissue remodeling and the resolution of inflammation [1]. Although apoptotic cells are known to be efficiently phagocytosed by macrophages, the mechanisms whereby their interaction with the phagocytes triggers their engulfment have not been described in mammals. Here, we report that primary murine bone marrow-derived macrophages (using alpha(v)beta(3) integrin for apoptotic cell uptake) extend lamellipodia to engulf apoptotic cells and form an actin cup where phosphotyrosine accumulates. Rho GTPases and PI 3-kinases have been widely implicated in the regulation of the actin cytoskeleton [2, 3]. We show that inhibition of Rho GTPases by Clostridium difficile toxin B prevents apoptotic cell phagocytosis and inhibits the accumulation of both F-actin and phosphotyrosine. Importantly, the Rho GTPases Rac1 and Cdc42 are required for apoptotic cell uptake whereas Rho inhibition enhances uptake. The PI 3-kinase inhibitor LY294002 also prevents apoptotic cell phagocytosis but has no effect on the accumulation of F actin and phosphotyrosine. These results indicate that both Rho GTPases and PI 3-kinases are involved in apoptotic cell phagocytosis but that they play distinct roles in this process.  相似文献   

19.
Macrophage apoptosis and efferocytosis are key determinants of atherosclerotic plaque inflammation and necrosis. Bone marrow transplantation studies in ApoE- and LDLR-deficient mice revealed that hematopoietic scavenger receptor class B type I (SR-BI) deficiency results in severely defective efferocytosis in mouse atherosclerotic lesions, resulting in a 17-fold higher ratio of free to macrophage-associated dead cells in lesions containing SR-BI−/− cells, 5-fold more necrosis, 65.2% less lesional collagen content, nearly 7-fold higher dead cell accumulation, and 2-fold larger lesion area. Hematopoietic SR-BI deletion elicited a maladaptive inflammatory response [higher interleukin (IL)-1β, IL-6, and TNF-α lower IL-10 and transforming growth factor β]. Efferocytosis of apoptotic thymocytes was reduced by 64% in SR-BI−/− versus WT macrophages, both in vitro and in vivo. In response to apoptotic cells, macrophage SR-BI bound with phosphatidylserine and induced Src phosphorylation and cell membrane recruitment, which led to downstream activation of phosphoinositide 3-kinase (PI3K) and Ras-related C3 botulinum toxin substrate 1 (Rac1) for engulfment and clearance of apoptotic cells, as inhibition of Src decreased PI3K, Rac1-GTP, and efferocytosis in WT cells. Pharmacological inhibition of Rac1 reduced macrophage efferocytosis in a SR-BI-dependent fashion, and activation of Rac1 corrected the defective efferocytosis in SR-BI−/− macrophages. Thus, deficiency of macrophage SR-BI promotes defective efferocytosis signaling via the Src/PI3K/Rac1 pathway, resulting in increased plaque size, necrosis, and inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号