首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abdominal aortic aneurysm (AAA) is a life-threatening situation affecting almost 10% of elders. There has been no effective medication for AAA other than surgical intervention. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to have a protective effect on cardiovascular disease. Whether DPP-4 inhibitors may be beneficial in the treatment of AAA is unclear. We investigated the effects of DPP-4 inhibitor sitagliptin on the angiotensin II (Ang II)-infused AAA formation in apoE-deficient (apoE-/-) mice. Mice with induced AAA were treated with placebo or 2.5, 5 or 10 mg/kg/day sitagliptin. Ang II-infused apoE-/- mice exhibited a 55.6% incidence of AAA formation, but treatment with sitagliptin decreased AAA formation. Specifically, administered sitagliptin in Ang II-infused mice exhibited decreased expansion of the suprarenal aorta, reduced elastin lamina degradation of the aorta, and diminished vascular inflammation by macrophage infiltration. Treatment with sitagliptin decreased gelatinolytic activity and apoptotic cells in aorta tissues. Sitaglipitn, additionally, was associated with increased levels of plasma active glucagon-like peptide-1 (GLP-1). In vitro studies, GLP-1 decreased reactive oxygen species (ROS) production, cell migration, and MMP-2 as well as MMP-9 activity in Ang II-stimulated monocytic cells. The results conclude that oral administration of sitagliptin can prevent abdominal aortic aneurysm formation in Ang II-infused apoE-/-mice, at least in part, by increasing of GLP-1 activity, decreasing MMP-2 and MMP-9 production from macrophage infiltration. The results indicate that sitagliptin may have therapeutic potential in preventing the development of AAA.  相似文献   

2.
Transforming growth factor-β (TGF-β) signaling has been significantly implicated in the pathogenesis of aneurysm, prominently the initiation and progression of abdominal aortic aneurysm (AAA). Vascular smooth muscle cell (SMC) is the principal resident cell in aortic wall and is essential for its structure and function. However, the role of TGF-β pathway in SMC for the formation of AAA remains unknown. Therefore, the goal of the present study was to investigate the effect of TGF-β pathway in SMC for AAA pathogenesis, by using a genetical smooth muscle-specific (SM-specific) TGF-βtype II receptor (Tgfbr2) disruption animal model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2f/f and MyhCre.Tgfbr2WT/f) and their corresponding wild-type background mice (MyhCre.Tgfbr2WT/WT) underwent AAA induction by infrarenal peri-adventitial application of elastase. Fourteen days after elastase treatment, the aortas were analyzed and indicated that disruption of 1 or 2 alleles of Tgfbr2 in SMC provided markedly step-wise protection from AAA formation. And elastin degradation, medial SMC loss, macrophage infiltration, and matrix metalloproteinases (MMP) expression were all significantly reduced in Tgfbr2 deletion mice. Our study demonstrated, for the first time, that the TGF-β signaling pathway in SMC plays a critical role in AAA and disruption can prevent the aneurysm formation.  相似文献   

3.
Dysregulation of matrix metalloproteinases (MMPs) and ineffective fibrinolysis are associated with the deposition of extracellular matrix (ECM). We hypothesized that elevated plasminogen activator inhibitor (PAI)-1 promotes ECM deposition in the asthmatic airway by inhibiting MMP-9 activity and fibrinolysis. Degree of airway inflammation was similar in PAI-1(-/-) and wild type (WT) mice after ovalbumin (OVA) challenge. PAI-1 production, deposition of collagen and fibrin, and MMP-9 activity in the lung tissue or airways were greater after OVA challenge compared with saline challenge. However, in PAI-1(-/-) mice, collagen deposition was 2-fold less, fibrin deposition was 4-fold less, and MMP-9 activity was 3-fold higher. This is the first direct evidence that the plasmin system regulates ECM deposition in the airways of a murine asthma model, independently of the effect of PAI-1 on inflammatory cells. The results suggest that the PAI-1-dependent inhibition of MMP-9 activity and fibrinolysis is a major mechanism by which ECM deposition occurs.  相似文献   

4.
Wang H  Zhang Y  Heuckeroth RO 《FEBS letters》2007,581(16):3098-3104
Plasminogen activator inhibitor-1 (PAI-1) increases injury in several liver, lung and kidney disease models. The objective of this investigation was to assess the effect of PAI-1 deficiency on cholestatic liver fibrosis and determine PAI-1 influenced fibrogenic mechanisms. We found that PAI-1(-/-) mice had less fibrosis than wild type (WT) mice after bile duct ligation. This change correlated with increased tissue-type plasminogen activator (tPA) activity, and increased matrix metalloproteinase-9 (MMP-9), but not MMP-2 activity. Furthermore, there was increased activation of the tPA substrate hepatocyte growth factor (HGF), a known anti-fibrogenic protein. In contrast, there was no difference in hepatic urokinase plasminogen activator (uPA) or plasmin activities between PAI-1(-/-) and WT mice. There was also no difference in the level of transforming growth factor beta 1 (TGF-beta1), stellate cell activation or collagen production between WT and PAI-1(-/-) animals. In conclusion, PAI-1 deficiency reduces hepatic fibrosis after bile duct obstruction mainly through the activation of tPA and HGF.  相似文献   

5.
《Gender Medicine》2012,9(4):259-266.e2
BackgroundAbdominal aortic aneurysms (AAAs) differ in men and women. Women are older at diagnosis, have a higher risk of rupture, and worse outcome after surgery compared with men. The higher occurrence of AAAs in men accounts for the dominance of men in biomarker analyses.ObjectiveThe primary aim of this study was to investigate levels of established biomarkers for AAA in men and women, and the secondary aim was to compare biomarker levels in women with and without AAAs.MethodsIn this prospective case–control study, blood samples were collected from 16 women and 18 men with AAAs ≥5.5 cm, from 20 women with AAAs <5.5 cm, and from 18 women with peripheral artery disease (PAD). Plasma concentrations of matrix metalloproteinase (MMP) −2, −9, and −13; tissue inhibitor of MMP-1 (TIMP-1); plasminogen activator inhibitor 1 (PAI-1); high-sensitivity C-reactive protein (hsCRP); and estradiol levels were analyzed by ELISA. An ultrasound examination was performed in women with PAD to exclude an AAA.ResultsAge and other comorbid conditions were similar between men and women with AAAs. Women with AAAs had higher levels of MMP-9 compared with men with equally large AAAs (42.8 ng/mL vs 36.2 ng/mL, P = 0.036) and lower levels of estradiol (30.0 pmoL vs 86.5 pmol/L, P < 0.001). Women with AAAs had lower levels of MMP-9 compared with women without (59.5 ng/mL vs 132.6 ng/mL, P = 0.010). There was no significant difference in the plasma levels of MMP-2, MMP-13, hsCRP, PAI-1, TIMP-1, and estradiol between women with and without AAAs.ConclusionThe higher levels of MMP-9 in women compared with men with equally large AAAs could suggest that MMP-9 is a biomarker related to the sex differences in aneurysm development. The lower levels of estradiol in women with AAAs compared with men suggest that the possible protective effect of endogenous estrogen cannot be explained by a difference in circulating levels of estradiol.  相似文献   

6.
7.
The aim of the present study was to investigate the importance of tumor necrosis factor (TNF)-alpha receptor-1 (TNFR1)-mediated pathways in a murine model of myocardial infarction and remodeling. One hundred and ninety-four wild-type (WT) and TNFR1 gene-deleted (TNFR1KO) mice underwent left coronary artery ligation to induce myocardial infarction. On days 1, 3, 7, and 42, mice underwent transesophageal echocardiography. Hearts were weighed, and the left ventricle (LV) was assayed for matrix metalloproteinase (MMP)-2 and -9 activity and for tissue inhibitor of MMP (TIMP)-1 and -2 expression. Deletion of the TNFR1 gene substantially improved survival because no deaths were observed in TNFR1KO mice versus 56.4% and 18.2% in WT males and females, respectively (P < 0.002). At 42 days, LV remodeling, assessed by LV function (fractional area change of 31.9 +/- 7.9%, 32.2 +/- 7.7%, and 21.6 +/- 7.1% in TNFR1KO males, TNFR1KO females, and WT females, respectively, P < 0.04), and hypertrophy (heart weight-to-body weight ratios of 5.435 +/- 0.986, 5.485 +/- 0.677, and 6.726 +/- 0.704 mg/g, P < 0.04) were ameliorated in TNFR1KO mice. MMP-9 activity was highest at 3 days postinfarction and was highest in WT males (1.9 +/- 0.4 4, 3.6 +/- 0.24, 1.15 +/- 0.28, and 1.3 +/- 1.2 ng/100 microg protein, respectively, in TNFR1KO males, WT males, TNFR1KO females, and WT females, respectively, P < 0.002), whereas at 3 days TIMP-1 mRNA fold upregulation compared with type- and sex-matched controls was lowest in WT males (138.32 +/- 13.05, 46.74 +/- 5.43, 186.09 +/- 28.07, and 101.76 +/- 22.48, respectively, P < 0.002). MMP-2 and TIMP-2 increased similarly in all infarcted groups. These findings suggest that the benefits of TNFR1 ablation might be attributable at least in part to the attenuation of cytokine-mediated imbalances in MMP-TIMP activity.  相似文献   

8.
Group X secretory PLA(2) (sPLA(2)-X) is expressed in neutrophils and plays a role in the pathogenesis of neutrophil-mediated tissue inflammation and injury. This study tested the hypothesis that sPLA(2)-X in neutrophils may contribute to the pathogenesis of abdominal aortic aneurysms (AAA) using sPLA(2)-X(-/-) mice. AAA was created by application of CaCl(2) to external surface of aorta. As a result, the aortas of sPLA(2)-X(-/-) mice had smaller diameters (percent increase from baseline; 24.8 ± 3.5% vs. 49.9 ± 9.1%, respectively; P < 0.01), a reduced grade of elastin degradation, and lower activities of elastase and gelatinase (26% and 19% lower, respectively) after CaCl(2) treatment compared with sPLA(2)-X(+/+) mice. In sPLA(2)-X(+/+) mice, immunofluorescence microscopic images showed that the immunoreactivity of sPLA(2)-X was detected only in neutrophils within aortic walls 3 days, 1, 2, and 6 wk after CaCl(2) treatment, whereas the immunoreactivity was not detected in macrophages or mast cells in aortic walls. sPLA(2)-X immunoreactivity also was colocalized in cells expressing matrix metalloproteinase (MMP)-9. Neutrophils isolated from sPLA(2)-X(-/-) mice had lower activities of elastase, gelatinase, and MMP-9 in response to stimuli compared with sPLA(2)-X(+/+) mice. The attenuated release of elastase and gelatinase from sPLA(2)-X(-/-) neutrophils was reversed by exogenous addition of mouse sPLA(2)-X protein. The adoptive transfer of sPLA(2)-X(+/+) neutrophils days 0 and 3 after CaCl(2) treatment reversed aortic diameters and elastin degradation grades in the lethally irradiated sPLA(2)-X(+/+) mice reconstituted with sPLA(2)-X(-/-) bone marrow to an extent similar to that seen in sPLA(2)-X(+/+) mice. In conclusion, sPLA(2)-X in neutrophils plays a pathogenic role in AAA in a mice model.  相似文献   

9.
During arterial aneurysm formation, levels of the membrane-anchored matrix metalloproteinase, MT1-MMP, are elevated dramatically. Although MT1-MMP is expressed predominately by infiltrating macrophages, the roles played by the proteinase in abdominal aortic aneurysm (AAA) formation in vivo remain undefined. Using a newly developed chimeric mouse model of AAA, we now demonstrate that macrophage-derived MT1-MMP plays a dominant role in disease progression. In wild-type mice transplanted with MT1-MMP-null marrow, aneurysm formation induced by the application of CaCl2 to the aortic surface was almost completely ablated. Macrophage infiltration into the aortic media was unaffected by MT1-MMP deletion, and AAA formation could be reconstituted when MT1-MMP+/+ macrophages, but not MT1-MMP+/+ lymphocytes, were infused into MT1-MMP-null marrow recipients. In vitro studies using macrophages isolated from either WT/MT1-MMP-/- chimeric mice, MMP-2-null mice, or MMP-9-null mice demonstrate that MT1-MMP alone plays a dominant role in macrophage-mediated elastolysis. These studies demonstrate that destruction of the elastin fiber network during AAA formation is dependent on macrophage-derived MT1-MMP, which unexpectedly serves as a direct-acting regulator of macrophage proteolytic activity.Development and progression of abdominal aortic aneurysm (AAA)2 is a complex process that, untreated, can lead to tissue failure, hemorrhage, and death (1). Destruction of the orderly elastin lamellae of the vessel wall is considered the sine qui non of arterial aneurysm formation (2) as adult tissues cannot regenerate normal elastin fibers (3). Moreover, the elastin degradation products are chemotactic for inflammatory cells and serve to amplify the local injury (4). Although several types of elastolytic proteases are elevated in AAA tissue (5-9), studies using murine models of AAA and targeted protease deletion suggest that matrix metalloproteinases (MMPs), particularly the secreted proteases, MMP-2 and MMP-9, play key roles in the pathologic remodeling of the elastin lamellae that lead to AAA (7, 8).Membrane-type 1 MMP (MT1-MMP) is the prototypical member of a family of membrane-tethered MMPs (10). Recent studies indicate that MT1-MMP expression is elevated in human AAA tissues and that infiltrating macrophages are the primary source of the proteinase in aortic lesions (11-13). Although indirect evidence suggests that MT1-MMP may participate in the control of monocyte/macrophage motile responses as well as interactions with the vessel wall during transmigration (14, 15), the role(s) played by MT1-MMP in regulating macrophage proteolytic activity or AAA formation in vivo remains undefined.Using a murine model of AAA and mice with a targeted deletion of MT1-MMP in myelogenous cell populations, we now demonstrate that macrophage-derived MT1-MMP is required for elastin degradation and aneurysm formation. Importantly, macrophages are not dependent on MT1-MMP for infiltrating aortic tissues but instead use the protease to directly regulate their elastolytic potential in an MMP-2- and MMP-9-independent fashion. These studies define a new and unexpected role for MT1-MMP in controlling macrophage elastolytic activity in the in vitro and in vivo settings.  相似文献   

10.

Background

Despite the importance of the renin-angiotensin (Ang) system in abdominal aortic aneurysm (AAA) pathogenesis, strategies targeting this system to prevent clinical aneurysm progression remain controversial and unproven. We compared the relative efficacy of two Ang II type 1 receptor blockers, telmisartan and irbesartan, in limiting experimental AAAs in distinct mouse models of aneurysm disease.

Methodology/Principal Findings

AAAs were induced using either 1) Ang II subcutaneous infusion (1000 ng/kg/min) for 28 days in male ApoE−/− mice, or 2) transient intra-aortic porcine pancreatic elastase infusion in male C57BL/6 mice. One week prior to AAA creation, mice started to daily receive irbesartan (50 mg/kg), telmisartan (10 mg/kg), fluvastatin (40 mg/kg), bosentan (100 mg/kg), doxycycline (100 mg/kg) or vehicle alone. Efficacy was determined via serial in vivo aortic diameter measurements, histopathology and gene expression analysis at sacrifice. Aortic aneurysms developed in 67% of Ang II-infused ApoE−/− mice fed with standard chow and water alone (n = 15), and 40% died of rupture. Strikingly, no telmisartan-treated mouse developed an AAA (n = 14). Both telmisartan and irbesartan limited aneurysm enlargement, medial elastolysis, smooth muscle attenuation, macrophage infiltration, adventitial neocapillary formation, and the expression of proteinases and proinflammatory mediators. Doxycycline, fluvastatin and bosentan did not influence aneurysm progression. Telmisartan was also highly effective in intra-aortic porcine pancreatic elastase infusion-induced AAAs, a second AAA model that did not require exogenous Ang II infusion.

Conclusion/Significance

Telmisartan suppresses experimental aneurysms in a model-independent manner and may prove valuable in limiting clinical disease progression.  相似文献   

11.
Clinical complications of atherosclerosis are often triggered by the rupture of unstable plaques, while thinning of the atherosclerotic vessel wall owing to elastin and collagen degradation and media necrosis may result in aneurysm formation and bleeding. Proteolysis, mediated via the plasminogen/plasmin and/or matrix metalloproteinase (MMP) systems may contribute to neovascularization and rupture of plaques, or to ulceration and rupture of aneurysms. In an in vivo model of atherosclerosis, using mice that had a combined deficiency of apolipoprotein E (ApoE) and urokinase-type plasminogen activator (u-PA) and that were maintained on a cholesterol-rich diet, it was observed that u-PA deficiency protects against aneurysm formation. This was explained by the findings that plasmin, generated from plasminogen by u-PA, activates several macrophage-secreted proMMPs (e.g. proMMP-3, -9, -12 and -13), which in turn cause extracellular matrix degradation. A potential role for MMP-3 (stromelysin-1) was confirmed in a subsequent study using mice with a combined deficiency of ApoE and MMP-3, that were kept on a cholesterol-rich diet. The results suggest that MMP-3 contributes to plaque destabilization, possibly by degrading extracellular matrix components, but also promotes aneurysm formation by degrading the elastic lamina. These effects may be mediated by MMP-3 directly or by activation of other proMMPs or other (proteolytic) systems. A functional role of MMPs is further supported by the finding that deficiency in TIMP-1 (tissue inhibitor of MMPs type 1) reduces atherosclerotic plaque size but enhances aneurysm formation. Taken together, these results suggest that u-PA has an important role in the structural integrity of the atherosclerotic vessel wall, which is likely to involve triggering the activation of MMPs and, furthermore, they suggest that increased u-PA levels are a risk factor for aneurysm formation.  相似文献   

12.

Background

The purpose of this study was to introduce a novel, simple and effective technique for creating a reliable rabbit model of abdominal aortic aneurysm (AAA) via a combination of periaortic calcium chloride (CaCl2) and elastase incubation.

Methods

Forty-eight New Zealand white rabbits were divided into four groups. The AAA model was developed via a 20-minute periaortic incubation of CaCl2 (0.5 mol/L) and elastase (1 Unit/µL) in a 1.5-cm aortic segment (Group CE). A single incubation of CaCl2 (Group C) or elastase (Group E) and a sham operation group (Sham Group) were used for the controls. Diameter was measured by serial digital subtraction angiography imaging on days 5, 15 and 30. Animals were sacrificed on day 5 and day 30 for histopathological and immunohistochemical studies.

Results

All animals in Group CE developed aneurysm, with an average dilation ratio of 65.3%±8.9% on day 5, 86.5%±28.7% on day 15 and 203.6%±39.1% on day 30. No aneurysm was found in Group C, and only one aneurysm was seen on day 5 in Group E. Group CE exhibited less intima-media thickness, endothelial recovery, elastin and smooth muscle cell (SMC) content, but stronger expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and RAM11 compared to the controls.

Conclusions

The novel rabbit model of AAA created by using a combination of periaortic CaCl2 and elastase incubation is simple and effective to perform and is valuable for elucidating AAA mechanisms and therapeutic interventions in experimental studies.  相似文献   

13.
14.
An abdominal aortic aneurysm(AAA) is a permanent, localized dilatation of the abdominal aorta. In western countries, the morbidity of AAA is approximately 8%. Currently, pharmacotherapies for AAA are limited. Here, we demonstrate that baicalein(BAI), the main component of the Chinese traditional drug "Huang Qin", attenuates the incidence and severity of AAA in Apoe儃/儃 mice infused with angiotensin II(AngII). Mechanically, BAI treatment decreases AngII-induced reactive oxygen species(ROS) production in the aortic wall. Moreover, BAI inhibits inflammatory cell accumulation in the aortas of mice infused with AngII. It also inhibits AngII-induced activation of matrix metalloproteinase 2(MMP-2) and MMP-9 to maintain elastin content in vivo. In addition, it blocks AngII cascade by downregulating angiotensin type 1 receptor(AT1R) and inhibiting mitogen-activated protein kinases(MAPKs). Taken together, our findings show that BAI is an effective agent for AAA prevention.  相似文献   

15.
The effect of pravastatin on matrix metalloproteinase-9 (MMP-9) and the level of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 was studied in explants of human abdominal aortic aneurysm (AAA) obtained from 13 patients. The effect of pravastatin on the apoptotic status of human AAA explants was also examined. Total MMP-9 content did not differ in human AAA explants incubated in vitro in the presence or absence of pravastatin (10-6 mol/L) for 48 h. TIMP-1 levels were significantly increased in pravastatin-incubated AAA explants, but TIMP-2 production was not modified by pravastatin. Western blot experiments showed that, whereas Bax expression was increased in pravastatin-incubated AAA explants, the expression of Bcl-2 was not modified. On the other hand, the ratio of the expression of Bax to Bcl-2, an apoptotic index, was not modified by pravastatin. In the human AAA explants, the increase in Bax expression, but not the increase in TIMP-1 expression elicited by pravastatin, was reversed by L-mevalonate, a downstream HMG-CoA reductase metabolite, suggesting that the expression of Bax and TIMP-1 followed HMG-CoA reductase-dependent and -independent pathways, respectively. In conclusion, pravastatin increases both TIMP-1 and Bax expression in human AAA explants without changes in either MMP-9 activity or the apoptotic status.  相似文献   

16.
Self-healing phenomenon was found in the periarterial elastase-induced abdominal aortic aneurysm (AAA) in rabbit. This kind of aneurysm model does not progress and heals spontaneously in the long term, which is quite different from the performance of AAA disease in human. In order to better mimic human AAA and overcome this shortcoming of traditional AAA model in rabbit, we studied the pathogenesis of cerebral aneurysm (CA) model in small animal, which shows an excellent long-term patency and progressive enlargement. We found that hemodynamic conditions, such as turbulence flow, high blood flow, and shear stress, play an important role in the formation and progression of CA. So, we hypothesize that hemodynamic change may also play an essential role in the initiation and progression of rabbit AAA, and self-healing will be overcome if hemodynamic condition changes by coarctation of infra-renal aorta after elastase incubation.  相似文献   

17.
The goal of this study was to determine the role of estrogen receptor subtypes in the development of pressure overload hypertrophy in mice. Epidemiological studies have suggested gender differences in the development of hypertrophy and heart disease, but the mechanism and the role of estrogen receptor subtypes are not established. We performed transverse aortic constriction (TAC) and sham operations in male and female wild-type (WT) mice and mice lacking functional estrogen receptor-alpha [alpha-estrogen receptor knockout (alpha-ERKO)] and mice lacking estrogen receptor-beta (beta-ERKO). Body, heart, and lung weights were measured 2 wk postsurgery. WT male mice subjected to TAC showed a 64% increase in the heart weight-to-body weight ratio (HW/BW) compared with sham, and WT males have increased lung weight at 2 wk. WT female mice subjected to TAC showed a 31% increase in HW/BW compared with sham, which was significantly less than their male counterparts and with no evidence of heart failure. alpha-ERKO females developed HW/BW nearly identical to that seen in WT littermate females in response to TAC, indicating that estrogen receptor-alpha is not essential for the attenuation of hypertrophy observed in WT females. In contrast, beta-ERKO females responded to TAC with a significantly greater increase in HW/BW than WT littermate females. beta-ERKO females have lower expression of lipoprotein lipase at baseline than WT or alpha-ERKO females. These data suggest an important role for estrogen receptor-beta in attenuating the hypertrophic response to pressure overload in females.  相似文献   

18.
Abdominal aortic aneurysm (AAA) is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe−/− mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II), and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002) increased (2.24±0.20 mm) in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm). Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm) in the aneurysm-induced mice (β-carotene, P = 0.0002). It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe−/− mice.  相似文献   

19.
Abdominal aortic aneurysm (AAA) is characterized by chronic inflammation, which leads to pathological remodeling of the extracellular matrix. Decorin, a small leucine-rich repeat proteoglycan, has been suggested to regulate inflammation and stabilize the extracellular matrix. Therefore, the present study investigated the role of decorin in the pathogenesis of AAA. Decorin was localized in the aortic adventitia under normal conditions in both mice and humans. AAA was induced in mice using CaCl2 treatment. Initially, decorin protein levels decreased, but as AAA progressed decorin levels increased in all layers. Local administration of exogenous decorin prevented the development of CaCl2-induced AAA. However, decorin was highly expressed in the degenerative lesions of human AAA walls, and this expression positively correlated with matrix metalloproteinase (MMP)-9 expression. In cell culture experiments, the addition of decorin inhibited secretion of MMP-9 in vascular smooth muscle cells, but had the opposite effect in macrophages. The results suggest that decorin plays a dual role in AAA. Adventitial decorin in normal aorta may protect against the development of AAA, but macrophages expressing decorin in AAA walls may facilitate the progression of AAA by up-regulating MMP-9 secretion.  相似文献   

20.
Toll-like receptor (TLR) family plays a key role in innate immunity and various inflammatory responses. TLR4, one of the well-characterized pattern-recognition receptors, can be activated by endogenous damage-associated molecular pattern molecules such as high mobility group box 1 (HMGB1) to sustain sterile inflammation. Evidence suggested that blockade of TLR4 signaling may confer protection against abdominal aortic aneurysm (AAA). Herein we aimed to obtain further insight into the mechanism by which TLR4 might promote aneurysm formation. Characterization of the CaCl2-induced AAA model in mice revealed that upregulation of TLR4 expression, localized predominantly to vascular smooth muscle cells (VSMCs), was followed by a late decline during a 28-day period of AAA development. In vitro, TLR4 expression was increased in VSMCs treated with HMGB1. Knockdown of TLR4 by siRNA attenuated HMGB1-enhanced production of proinflammatory cytokines, specifically interleukin-6 and monocyte chemoattractant protein-1 (MCP-1), and matrix-degrading matrix metalloproteinase (MMP)-2 from VSMCs. In vivo, two different strains of TLR4-deficient (C57BL/10ScNJ and C3H/HeJ) mice were resistant to CaCl2-induced AAA formation compared to their respective controls (C57BL/10ScSnJ and C3H/HeN). Knockout of TLR4 reduced interleukin-6 and MCP-1 levels and HMGB1 expression, attenuated macrophage accumulation, and eventually suppressed MMP production, elastin destruction and VSMC loss. Finally, human AAA exhibited higher TLR4 expression that was localized to VSMCs. These data suggest that TLR4 signaling contributes to AAA formation by promoting a proinflammatory status of VSMCs and by inducing proteinase release from VSMCs during aneurysm initiation and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号