首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging is associated with profound changes in the structure and function of the heart. A fundamental understanding of these processes, using relevant animal models, is required for effective prevention and treatment of cardiovascular disease in the elderly. Here, we studied cardiac performance in 4- to 5-mo-old (young) and 24- to 26-mo-old (old) Fischer 344 male rats using the Millar pressure-volume (P-V) conductance catheter system. We evaluated systolic and diastolic function in vivo at different preloads, including preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (+dP/dt), and its relation to end-diastolic volume (+dP/dt-EDV) as well as the time constant of left ventricular pressure decay, as an index of relaxation. The slope of the end-diastolic P-V relation (EDPVR), an index of left ventricular stiffness, was also calculated. Aging was associated with decrease in left ventricular systolic pressure, +dP/dt, maximal slope of the diastolic pressure decrement, +dP/dt-EDV, PRSW, ejection fraction, stroke volume, cardiac and stroke work indexes, and efficiency. In contrast, total peripheral resistance, left ventricular end-diastolic volume, left ventricular end-diastolic pressure, and EDPVR were greater in aging than in young animals. Taken together, these data suggest that advanced aging is characterized by decreased systolic performance accompanied by delayed relaxation and increased diastolic stiffness of the heart in male Fischer 344 rats. P-V analysis is a sensitive method to determine cardiac function in rats.  相似文献   

2.
The effects of protein-calorie malnutrition (PCM) on heart structure and function are not completely understood. We studied heart morphometric, functional, and biochemical characteristics in undernourished young Wistar rats. They were submitted to PCM from birth (undernourished group, UG). After 10 wk, left ventricle function was studied using a Langendorff preparation. The results were compared with age-matched rats fed ad libitum (control group, CG). The UG rats achieved 47% of the body weight and 44% of the left ventricular weight (LVW) of the CG. LVW-to-ventricular volume ratio was smaller and myocardial hydroxyproline concentration was higher in the UG. Left ventricular systolic function was not affected by the PCM protocol. The myocardial stiffness constant was greater in the UG, whereas the end-diastolic pressure-volume relationship was not altered. In conclusion, the heart is not spared from the adverse effects of PCM. There is a geometric alteration in the left ventricle with preserved ventricular compliance despite the increased passive myocardial stiffness. The systolic function is preserved.  相似文献   

3.
Ventricular tachyarrhythmias are the most common cause of sudden cardiac death (SCD); a healed myocardial infarction increases the risk of SCD. We determined the contribution of specific repolarization abnormalities to ventricular tachyarrhythmias in a postinfarction model of SCD. For our methods, we used a postinfarction canine model of SCD, where an exercise and ischemia test was used to stratify animals as either susceptible (VF(+)) or resistant (VF(-)) to sustained ventricular tachyarrhythmias. Our results show no changes in global left ventricular contractility or volumes occurred after infarction. At 8-10 wk postmyocardial infarction, myocytes were isolated from the left ventricular midmyocardial wall and studied. In the VF(+) animals, myocyte action potential (AP) prolongation occurred at 50 and 90% repolarization (P < 0.05) and was associated with increased variability of AP duration and afterdepolarizations. Multiple repolarizing K(+) currents (I(Kr), I(to)) and inward I(K1) were also reduced (P < 0.05) in myocytes from VF(+) animals compared with control, noninfarcted dogs. In contrast, only I(to) was reduced in VF(-) myocytes compared with controls (P < 0.05). While afterdepolarizations were not elicited at baseline in myocytes from VF(-) animals, afterdepolarizations were consistently elicited after the addition of an I(Kr) blocker. In conclusion, the loss of repolarization reserve via reductions in multiple repolarizing currents in the VF(+) myocytes leads to AP prolongation, repolarization instability, and afterdepolarizations in myocytes from animals susceptible to SCD. These abnormalities may provide a substrate for initiation of postmyocardial infarction ventricular tachyarrhythmias.  相似文献   

4.
Diastolic heart failure is a major cause of mortality in the elderly population. It is often preceded by diastolic dysfunction, which is characterized by impaired active relaxation and increased stiffness. We tested the hypothesis that senescence-prone (SAMP8) mice would develop diastolic dysfunction compared with senescence-resistant controls (SAMR1). Pulsed-wave Doppler imaging of the ratio of blood flow velocity through the mitral valve during early (E) vs. late (A) diastole was reduced from 1.3 ± 0.03 in SAMR1 mice to 1.2 ± 0.03 in SAMP8 mice (P < 0.05). Tissue Doppler imaging of the early (E') and late (A') diastolic mitral annulus velocities found E' reduced from 25.7 ± 0.9 mm/s in SAMR1 to 21.1 ± 0.8 mm/s in SAMP8 mice and E'/A' similarly reduced from 1.1 ± 0.02 to 0.8 ± 0.03 in SAMR1 vs. SAMP8 mice, respectively (P < 0.05). Invasive hemodynamics revealed an increased slope of the end-diastolic pressure-volume relationship (0.5 ± 0.05 vs. 0.8 ± 0.14; P < 0.05), indicating increased left ventricular chamber stiffness. There were no differences in systolic function or mean arterial pressure; however, diastolic dysfunction was accompanied by increased fibrosis in the hearts of SAMP8 mice. In SAMR1 vs. SAMP8 mice, interstitial collagen area increased from 0.3 ± 0.04 to 0.8 ± 0.09% and perivascular collagen area increased from 1.0 ± 0.11 to 1.6 ± 0.14%. Transforming growth factor-β and connective tissue growth factor gene expression were increased in the hearts of SAMP8 mice (P < 0.05 for all data). In summary, SAMP8 mice show increased fibrosis and diastolic dysfunction similar to those seen in humans with aging and may represent a suitable model for future mechanistic studies.  相似文献   

5.
We investigated the impact of obesity on the abnormalities of systolic and diastolic regional left ventricular (LV) function in patients with or without hypertension or hypertrophy, and without heart failure. We studied 120 individuals divided into 6 groups of 20 patients (42 ± 6 years, 60 females) using standard and pulsed-wave tissue Doppler imaging (TDI) echocardiography, and heterogeneity index (HI): nonobese (I: no hypertension, no hypertrophy, control group; II: hypertension, no hypertrophy; III: hypertension and hypertrophy) and obese (IV: no hypertension, no hypertrophy; V: hypertension, no hypertrophy; VI: hypertension and hypertrophy). The criterion for obesity was BMI ≥30 kg/m2, for hypertension was blood pressure ≥ 140/90 mm Hg, for hypertrophy in nonobese was LV mass/body surface area (BSA) >134 g/m(2) (men) and >110 mg/m2 (women), and in obese was LV mass/height(2.7) >50 (men) and >40 (women). Obese groups had normal LV ejection fraction compared with nonobese groups, but decreased longitudinal and radial systolic myocardial peak velocities (S'), and early diastolic myocardial peak velocity (E'). Also, a great variability of E' and late diastolic myocardial peak velocity (A') from the longitudinal basal region was observed in obese groups (E'basal nonobese: 11 ± 7 vs. obese 19 ± 11, P < 0.001, A'basal nonobese: 7 ± 4 vs. obese 11 ± 7, P < 0.001). Our findings were more evident when comparing groups IV with V and VI, with the latter having concentric hypertrophy and obvious segmental systolic and diastolic dysfunctions. Subclinical myocardial alterations and increased variability of the velocities were observed in obese groups, especially with hypertension and hypertrophy, reflecting impaired regional LV relaxation, segmental atrial, and systolic dysfunctions.  相似文献   

6.
Assessment of left ventricular systolic and diastolic pump properties is fundamental to advancing the understanding of cardiovascular pathophysiology and therapeutics, especially for heart failure. The use of end-systolic and end-diastolic pressure-volume relationships derived from measurements of instantaneous left ventricular pressure-volume loops emerged in the 1970s as a comprehensive approach for this purpose. As invasive and noninvasive techniques for measuring ventricular volume improved over the past decades, these relations have become commonly used by basic, translational, and clinical researchers. This review summarizes 1) the basic concepts underlying pressure-volume analysis of ventricular and myocardial systolic and diastolic properties, 2) deviations from ideal conditions typically encountered in real-life applications, 3) how these relationships are appropriately analyzed, including statistical analyses, and 4) the most common problems encountered by investigators and the appropriate remedies. The goal is to provide practical information and simple guidelines for accurate application and interpretation of pressure-volume data as they pertain to characterization of ventricular and myocardial properties in health and disease.  相似文献   

7.
Adrenomedullin (AM) used therapeutically reduces mortality in the acute phase of experimental myocardial infarction. However, AM is potentially deleterious in acute heart failure as it is vasodilative and inotropically neutral. AM and epinephrine (EPI) are cosecreted from chromaffin cells, indicating a physiological interaction. We assessed the hemodynamic and energetic profile of AM-EPI cotreatment, exploring whether drug interaction improves cardiac function. Left ventricular (LV) mechanoenergetics were evaluated in 14 open-chest pigs using pressure-volume analysis and the pressure-volume area-myocardial O(2) consumption (PVA-MVo(2)) framework. AM (15 ng·kg(-1)·min(-1), n = 8) or saline (controls, n = 6) was infused for 120 min. Subsequently, a concurrent infusion of EPI (50 ng·kg(-1)·min(-1)) was added in both groups (AM-EPI vs. EPI). AM increased cardiac output (CO) and coronary blood flow by 20 ± 10% and 39 ± 14% (means ± SD, P < 0.05 vs. baseline), whereas controls were unaffected. AM-EPI increased CO and coronary blood flow by 55 ± 17% and 75 ± 16% (P < 0.05, AM-EPI interaction) compared with 13 ± 12% (P < 0.05 vs. baseline) and 18 ± 31% (P = not significant) with EPI. LV systolic capacitance decreased by -37 ± 22% and peak positive derivative of LV pressure (dP/dt(max)) increased by 32 ± 7% with AM-EPI (P < 0.05, AM-EPI interaction), whereas no significant effects were observed with EPI. Mean arterial pressure was maintained by AM-EPI and tended to decrease with EPI (+2 ± 13% vs. -11 ± 10%, P = not significant). PVA-MVo(2) relationships were unaffected by all treatments. In conclusion, AM-EPI cotreatment has an inodilator profile with CO and LV function augmented beyond individual drug effects and is not associated with relative increases in energetic cost. This can possibly take the inodilator treatment strategy beyond hemodynamic goals and exploit the cardioprotective effects of AM in acute heart failure.  相似文献   

8.
Aging and diabetes mellitus (DM) both affect the structure and function of the myocardium, resulting in increased collagen in the heart and reduced cardiac function. As part of this process, hyperglycemia is a stimulus for the production of advanced glycation end products (AGEs), which covalently modify proteins and impair cell function. The goals of this study were first to examine the combined effects of aging and DM on hemodynamics and collagen types in the myocardium in 12 dogs, 9-12 yr old, and second to examine the effects of the AGE cross-link breaker phenyl-4,5-dimethylthazolium chloride (ALT-711) on myocardial collagen protein content, aortic stiffness, and left ventricular (LV) function in the aged diabetic heart. The alloxan model of DM was utilized to study the effects of DM on the aging heart. DM induced in the aging heart decreased LV systolic function (LV ejection fraction fell by 25%), increased aortic stiffness, and increased collagen type I and type III protein content. ALT-711 restored LV ejection fraction, reduced aortic stiffness and LV mass with no reduction in blood glucose level (199 +/- 17 mg/dl), and reversed the upregulation of collagen type I and type III. Myocardial LV collagen solubility (%) increased significantly after treatment with ALT-711. These data suggest that an AGE cross-link breaker may have a therapeutic role in aged patients with DM.  相似文献   

9.
Left ventricular (LV) systolic torsion is a primary mechanism contributing to stroke volume (SV). We hypothesized that change in LV torsion parallels changes in global systolic performance during dyssynchrony and cardiac resynchronization therapy (CRT). Seven anesthetized open chest dogs had LV pressure-volume relationship. Apical, basal, and mid-LV cross-sectional echocardiographic images were studied by speckle tracking analysis. Right atrial (RA) pacing served as control. Right ventricular (RV) pacing simulated left bundle branch block. Simultaneous RV-LV free wall and RV-LV apex pacing (CRTfw and CRTa, respectively) modeled CRT. Dyssynchrony was defined as the time difference in peak strain between earliest and latest segments. Torsion was calculated as the maximum difference between the apical and basal rotation. RA pacing had minimal dyssynchrony (52 ± 36 ms). RV pacing induced dyssynchrony (189 ± 61 ms, P < 0.05). CRTa decreased dyssynchrony (46 ± 36 ms, P < 0.05 vs. RV pacing), whereas CRTfw did not (110 ± 96 ms). Torsion during baseline RA was 6.6 ± 3.7°. RV pacing decreased torsion (5.1 ± 3.6°, P < 0.05 vs. control), and reduced SV, stroke work (SW), and dP/dt(max) compared with RA (21 ± 5 vs. 17 ± 5 ml, 252 ± 61 vs. 151 ± 64 mJ, and 2,063 ± 456 vs. 1,603 ± 424 mmHg/s, respectively, P < 0.05). CRTa improved torsion, SV, SW, and dP/dt(max) compared with RV pacing (7.7 ± 4.7°, 23 ± 3 ml, 240 ± 50 mJ, and 1,947 ± 647 mmHg/s, respectively, P < 0.05), whereas CRTfw did not (5.1 ± 3.6°, 18 ± 5 ml, 175 ± 48 mJ, and 1,699 ± 432 mmHg/s, respectively, P < 0.05). LV torsion changes covaried across conditions with SW (y = 0.94x+12.27, r = 0.81, P < 0.0001) and SV (y = 0.66x+0.91, r = 0.81, P < 0.0001). LV dyssynchrony changes did not correlate with SW or SV (r = -0.12, P = 0.61 and r = 0.08, P = 0.73, respectively). Thus, we conclude that LV torsion is primarily altered by dyssynchrony, and CRT that restores LV performance also restores torsion.  相似文献   

10.
There is no direct evidence to indicate that pump dysfunction in a dilated chamber reflects the impact of chamber dilatation rather than the degree of intrinsic systolic failure resulting from myocardial damage. In the present study, we explored the relative roles of intrinsic myocardial systolic dysfunction and chamber dilatation as mediators of left ventricular (LV) pump dysfunction. Administration of isoproterenol, a beta-adrenoreceptor agonist, for 3 mo to rats (0.1 mg.kg(-1).day(-1)) resulted in LV pump dysfunction as evidenced by a reduced LV endocardial fractional shortening (echocardiography) and a decrease in the slope of the LV systolic pressure-volume relation (isolated heart preparations). Although chronic beta-adrenoreceptor activation induced cardiomyocyte damage (deoxynucleotidyl transferase-mediated dUTP nick-end labeling) as well as beta(1)- and beta(2)-adrenoreceptor inotropic downregulation (attenuated contractile responses to dobutamine and salbutamol), these changes failed to translate into alterations in intrinsic myocardial contractility. Indeed, LV midwall fractional shortening (echocardiography) and the slope of the LV systolic stress-strain relation (isolated heart preparations) were unchanged. A normal intrinsic myocardial systolic function, despite the presence of cardiomyocyte damage and beta-adrenoreceptor inotropic downregulation, was ascribed to marked increases in myocardial norepinephrine release, to upregulation of alpha-adrenoreceptor-mediated contractile effects as determined by phenylephrine responsiveness, and to compensatory LV hypertrophy. LV pump failure was attributed to LV dilatation, as evidenced by increased LV internal dimensions (echocardiography), and a right shift and increased volume intercept of the LV diastolic pressure-volume relation. In conclusion, chronic sympathetic stimulation, despite reducing beta-adrenoreceptor-mediated inotropic responses and promoting myocyte apoptosis, may nevertheless induce pump dysfunction primarily through LV dilatation, rather than intrinsic myocardial systolic failure.  相似文献   

11.
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but inhibition of its isozyme, GRK2, has been beneficial in several HF models. Here, we tested whether inhibition of GRK3 modulated evolving cardiac hypertrophy and dysfunction after pressure overload. Weight-matched male GRK3ct transgenic and nontransgenic littermate control (NLC) mice subjected to chronic pressure overload by abdominal aortic banding (AB) were compared with sham-operated (SH) mice. At 6 wk after AB, a significant increase of cardiac mass consistent with induction of hypertrophy was found, but no differences between GRK3ct-AB and NLC-AB mice were discerned. Simultaneous left ventricular (LV) pressure-volume analysis of electrically paced, ex vivo perfused working hearts revealed substantially reduced systolic and diastolic function in NLC-AB mice (n = 7), which was completely preserved in GRK3ct-AB mice (n = 7). An additional cohort was subjected to in vivo cardiac catheterization and LV pressure-volume analysis at 12 wk after AB. NLC-AB mice (n = 11) displayed elevated end-diastolic pressure (8.5 ± 3.1 vs. 2.9 ± 1.2 mmHg, P < 0.05), reduced cardiac output (3,448 ± 323 vs. 4,488 ± 342 μl/min, P < 0.05), and reduced dP/dt(max) and dP/dt(min) (both P < 0.05) compared with GRK3ct-AB mice (n = 16), corroborating the preserved cardiac structure and function observed in GRK3ct-AB hearts assessed ex vivo. Increased cardiac mass and myocardial mRNA expression of β-myosin heavy chain confirmed the similar induction of cardiac hypertrophy in both AB groups, but only NLC-AB hearts displayed significantly elevated mRNA levels of brain natriuretic peptide and myocardial collagen contents as well as reduced β(1)-adrenergic receptor responsiveness to isoproterenol, indicating increased LV wall stress and the transition to HF. Inhibition of cardiac GRK3 in mice does not alter the hypertrophic response but attenuates cardiac dysfunction and HF after chronic pressure overload.  相似文献   

12.
Assuming a spherical geometry for the left ventricle, passive elastic stiffness-stress relations have been obtained on the basis of linear elasticity theory and large deformation theory. Employing pressure-volume aata taken from rat hearts of various age groups, it is shown that young rat heart muscle (1 month) is stiffer than either adult (7 months) or old rat heart muscle (17 months). Although the qualitative results are similar for both elasticity theories, the large deformation theory gave results in closer agreement with those obtained from papillary muscle studies. These results imply that stiffness of muscleper se can be assessed from left ventricular pressure-volume data.  相似文献   

13.
The most common cause of sudden cardiac death is ventricular fibrillation (VF). In addition to the status, size and location of the ventricular focus, a major pathogenic mechanism triggering VF is autonomic dysbalance (disturbance). This term refers to a wide range of reflex changes in the ratio of sympathetic to vagal ventricular activation over time, occurring immediately after coronary artery occlusion at the onset of acute myocardial infarction (AMI). Another trigger of VF is autonomic disturbance due to emotional stress. Experimental and clinical research into autonomic disturbances associated with coronary artery occlusion and emotional stress was given considerable attention as early as some 30 years ago when researchers were already searching for ways of inhibiting autonomic disturbances using predominant sympathetic and vagal activation by beta-blockers (BB) and atropine, respectively. The aim of our paper is to compare results obtained 30 years ago with current status of experimental and clinical research into SCD prevention. Another aim is to identify questions that have remained unanswered to date; answers to these outstanding questions could help further reduce the risk of SCD.  相似文献   

14.

Background  

Ventricular function has conventionally been characterized using indexes of systolic (contractile) or diastolic (relaxation/stiffness) function. Systolic indexes include maximum elastance or equivalently the end-systolic pressure volume relation and left ventricular ejection fraction. Diastolic indexes include the time constant of isovolumic relaxation - and the end-diastolic pressure-volume relation. Conceptualization of ventricular contraction/relaxation coupling presents a challenge when mechanical events of the cardiac cycle are depicted in conventional pressure, P, or volume, V, terms. Additional conceptual difficulty arises when ventricular/vascular coupling is considered using P, V variables.  相似文献   

15.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

16.
It is unknown whether ventricular fibrillation (VF) studied in experimental models represents in vivo human VF. First, we examined closed chest in vivo VF induced at defibrillation threshold testing (DFT) in four patients with ischemic cardiomyopathy pretransplantation. We examined VF in these same four hearts in an ex vivo human Langendorff posttransplantation. VF from DFT was compared with VF from the electrodes from a similar region in the right ventricular endocardium in the Langendorff using two parameters: the scale distribution width (extracted from continuous wavelet transform) and VF mean cycle length (CL). In a second substudy group where multielectrode phase mapping could be performed, we examined early VF intraoperatively (in vivo open chest condition) in three patients with left ventricular cardiomyopathy. We investigated early VF in the hearts of three patients in an ex vivo Langendorff and compared findings with intraoperative VF using two metrics: dominant frequency (DF) assessed by the Welch periodogram and the number of phase singularities (lasting >480 ms). Wavelet analysis (P = 0.9) and VF CL were similar between the Langendorff and the DFT groups (225 ± 13, 218 ± 24 ms; P = 0.9), indicating that wave characteristics and activation rate of VF was comparable between the two models. Intraoperative DF was slower but comparable with the Langendorff DF over the endocardium (4.6 ± 0.1, 5.0 ± 0.4 Hz; P = 0.9) and the epicardium (4.5 ± 0.2, 5.2 ± 0.4 Hz; P = 0.9). Endocardial phase singularity number (9.6 ± 5, 12.1 ± 1; P = 0.6) was lesser in number but comparable between in vivo and ex vivo VF. VF dynamics in the limited experimental human studies approximates human in vivo VF.  相似文献   

17.
The effects of impact timing during the cardiac cycle on the sensitivity of the heart to impact-induced rupture was investigated in an open-chest animal model. Direct mechanical impacts were applied to two adjacent sites on the exposed left ventricular surface at the end of systole or diastole. Impacts at 5 m/s and a contact stroke of 5 cm at the end of systole resulted in no cardiac rupture in seven animals, whereas similar impacts at the end of diastole resulted in six cardiac ruptures. Direct impact at 15 m/s and a contact stroke of 2 cm at the end of either systole or diastole resulted in perforationlike cardiac rupture in all attempts. At low-impact velocity the heart was observed in high-speed movie to bounce away from the impact interface during a systolic impact, but deform around the impactor during a diastolic impact. The heart generally remained motionless during the downward impact stroke at high-impact velocity in either a systolic or diastolic impact. The lower ventricular pressure, reduced muscle stiffness, thinner myocardial wall and larger mass of the filled ventricle probably contributed to a greater sensitivity of the heart to rupture in diastole at low-impact velocity. However, the same factors had no role at high-impact velocity.  相似文献   

18.
This study examined the effectiveness of a short-duration but high-intensity exercise countermeasure in combination with a novel oral volume load in preventing bed rest deconditioning and orthostatic intolerance. Bed rest reduces work capacity and orthostatic tolerance due in part to cardiac atrophy and decreased stroke volume. Twenty seven healthy subjects completed 5 wk of -6 degree head down bed rest. Eighteen were randomized to daily rowing ergometry and biweekly strength training while nine remained sedentary. Measurements included cardiac mass, invasive pressure-volume relations, maximal upright exercise capacity, and orthostatic tolerance. Before post-bed rest orthostatic tolerance and exercise testing, nine exercise subjects were given 2 days of fludrocortisone and increased salt. Sedentary bed rest led to cardiac atrophy (125 ± 23 vs. 115 ± 20 g; P < 0.001); however, exercise preserved cardiac mass (128 ± 38 vs. 137 ± 34 g; P = 0.002). Exercise training preserved left ventricular chamber compliance, whereas sedentary bed rest increased stiffness (180 ± 170%, P = 0.032). Orthostatic tolerance was preserved only when exercise was combined with volume loading (-10 ± 22%, P = 0.169) but not with exercise (-14 ± 43%, P = 0.047) or sedentary bed rest (-24 ± 26%, P = 0.035) alone. Rowing and supplemental strength training prevent cardiovascular deconditioning during prolonged bed rest. When combined with an oral volume load, orthostatic tolerance is also preserved. This combined countermeasure may be an ideal strategy for prolonged spaceflight, or patients with orthostatic intolerance.  相似文献   

19.
The cardiac output of isolated working rat heart and left ventricular pressure were estimated in either almost complete inhibition of creatine kinase by iodoacetamide or predominant fall in adenine nucleotides (AdN) content induced by 2-deoxyglucose treatment. In the former case, a profound cardiac pump failure was observed despite almost normal levels of myocardial AdN and phosphocreatine. Those hearts could not maintain the aortic output at standard load due to lower LV systolic pressure, that was accompanied by increased minimal and maximal diastolic pressures by 5-7 mm Hg as well as by LV diastolic stiffness. As LV systolic pressure in those hearts was unchanged in retrogradely perfused and unloaded hearts it might be suggested that the cardiac pump failure was caused by the decreased LV distensibility. On the contrary, deoxyglucose treatment that resulted in 70% fall in the AdN content was accompanied by only moderate reduction of the cardiac output and insignificant changes in LV diastolic pressure and stiffness. The results suggested that creatine kinase plays a crucial role in the maintenance of normal myofibrillar compliance, which is necessary for cardiac filling and pump function.  相似文献   

20.
A chronic left anterior descending coronary artery (LAD) stenosis leads to the development of hibernating myocardium with severe regional hypokinesis but normal global ventricular function after 3 mo. We hypothesized that two-vessel occlusion would accelerate the progression to hibernating myocardium and lead to global left ventricular (LV) dysfunction and heart failure. Pigs were instrumented with a fixed 1.5-mm constrictor on the proximal LAD and circumflex arteries. After 2 mo, there were no overt signs of right-heart failure and triphenyl tetrazolium chloride infarction was trivial (1.4 +/- 0.1% of the LV). Compared with shams, regional function [myocardial systolic excursion (DeltaWT); 2.1 +/- 0.3 vs. 4.6 +/- 0.4 mm, P < 0.05] and resting perfusion (0.90 +/- 0.13 vs. 1.32 +/- 0.09 ml small middle dot min(-1) small middle dot g(-1), P < 0.05) were reduced, consistent with hibernating myocardium. Pulmonary systolic (45.9 +/- 3.3 vs. 36.5 +/- 2.2 mmHg, P < 0.05) and wedge pressures (19.1 +/- 1.6 vs. 11.2 +/- 0.9 mmHg, P < 0.05) were increased with global ventricular dysfunction (ejection fraction 43 +/- 2 vs. 50 +/- 2%, P < 0.05). Early LV remodeling was present with increased cavity size and mass. Reductions in sarcoplasmic reticulum Ca(2+)-ATPase and phospholamban were confined to the dysfunctional LAD region with no change in calsequestrin. Thus combined stenoses of the LAD and circumflex arteries accelerate the development of hibernating myocardium and result in compensated heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号