首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneously hypertensive rats (SHR) are a well-known animal model for hypertension. We have previously identified eleven differentially expressed genes in the kidneys between SHR/Hos and Wistar-Kyoto rats (WKY/Hos) using an oligonucleotide microarray and analyzed the correlation between these genes and hypertension. In the present study, we analyzed the differentially expressed genes in the kidneys between SHR/NCrj and WKY/NCrj obtained from an other source to clarify the common and/or specific gene expression between the different sources. Furthermore, expression changes in the representative genes were characterized by Northern blot analysis using samples prepared from a third source, the Izm strain. The comparison revealed quite different changes in the differentially expressed genes among them. Sequence analysis of one of the differentially expressed genes, cytosolic epoxide hydrolase, revealed that two haplotypes could in part explain the expression level. Our study showed the complex nature of the genetic heterogeneity between SHR and WKY from different sources.  相似文献   

2.
3.
Instrumental conditioning techniques were used to obtain objective evidence of differences in behavioral arousal between the spontaneously hypertensive rat (SHR) and the normotensive ancestral Wistar Kyoto (WKY) strain. Subjective emotionality ratings previously indicated that the genetically hypertensive rats were more active and aggressive than their normotensive cousins. In a lengthy series of operant conditioning sessions using a small number of adult female SHR and WKY rats, hyperarousal in the SHR was confirmed by their significantly higher response outputs on either response contingent or time contingent schedules of reinforcement. Conditioned emotionality tests during this series of experiments also suggested hyperarousal and aggressiveness in the SHR, since the fear-conditioned stimulus suppressed bar-pressing in the SHR much less than in the WKY. Further experiments with young prehypertensive SHR rats provided the same evidence of hyperresponsivity in the SHR compared to the WKY strain. Furthermore, these young SHR failed to develop hypertension by the end of the study (14 weeks of age), while their nonconditioned SHR cousins had become clearly hypertensive by the same age. This suggests that factors related to the conditioning methods modified the development of high blood pressure in this animal model of essential hypertension.  相似文献   

4.
Arteries undergo remodeling as a consequence of increased wall stress during hypertension. However, the molecular mechanisms of the vascular remodeling are largely unknown. Proteomics is a powerful tool to screen for differentially expressed proteins, but little effort was made on vascular disease research, especially on hypertension. In the present study, the differentially expressed proteins in aortas from 18-week-old spontaneously hypertensive rats (SHR) and their normotensive counterpart, Wistar Kyoto rats (WKY), were examined by two-dimensional electrophoresis (2-DE). We found 50 proteins to be differentially expressed, among which 27 were highly or only expressed in SHR and 23 in WKY. Using matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF-MS) and online data search, nine proteins, including Rho GDP dissociation inhibitor alpha (RhoGDIalpha), were identified with high confidence. Further, the upregulation of RhoGDIalpha was verified at both mRNA and protein level in SHR. In addition, when cultured vascular smooth muscle cells (VSMCs) from aortas of SHR and WKY were treated with angiotensin II (Ang II) and antagonist of angiotensin II type I (AT(1)) receptor, L158809, respectively, RhoGDIalpha was upregulated by Ang II and downregulated by L158809 in VSMCs of SHR. These results demonstrate that vascular remodeling results in significant alterations in the protein expression profile of the aorta during hypertension and suggest that the upregulation of RhoGDIalpha in hypertension is induced by Ang II via AT(1) receptor.  相似文献   

5.
Spontaneously hypertensive rats (SHR) are one of the most common animal models used to study essential hypertension in humans. Because SHR and normotensive Wistar Kyoto (WKY) rats were both established from the same parental, normotensive Wistar stock, WKY animals have been used almost exclusively as control animals in studies of SHR. Recently, the suitability of WKY rats as normotensive controls for SHR has been challenged. To establish whether or not SHR and WKY rats share the same immunologic backgrounds, we initially performed a series of skin grafting experiments on these animals. In all cases, grafts of SHR donor skin to WKY recipients and of WKY donor skin to SHR recipients resulted in complete rejection within 7 to 10 days. In addition, grafts of WKY donor skin to other WKY recipients resulted in graft rejection. By contrast, skin grafts between SHRs were always accepted. To further characterize the genetic distinctions between SHR and WKY rats, allelic profiles based on a series of immunologic and biochemical markers were established for each strain. These findings clearly establish that SHR and WKY rats differ at the major histocompatibility complex, in specific blood group antigens, and in a panel of isozymic markers. Moreover, whereas SHRs have the same genetic profiles irrespective of source, some colonies of WKY rats are outbred, as judged by their variant allelic profiles.  相似文献   

6.
微小RNA在自发性高血压大鼠主动脉的差异表达   总被引:4,自引:0,他引:4  
Xu CC  Han WQ  Xiao B  Li NN  Zhu DL  Gao PJ 《生理学报》2008,60(4):553-560
微小RNAs(microRNAs,miRNAs)是一类基因组编码、非蛋白质编码的小RNA,在转录后水平负性调节靶基因表达.本研究探讨miRNAs在自发性高血压大(spontaneously hypertensive rats,SHR)主动脉的表达特征及其与高血压的关系.取4、8、16和24周龄雄性SHR大鼠及同龄正常血压对照(Wistar-Kyoto,WKY)大鼠.MiRanda、TargetScan和PicTar用于候选miRNAs及靶基因预测分析.通过实时定量RT-PCR检测大鼠主动脉miR-1、miR-133a、miR-155及miR-208的表达,并进一步通过实时定量RT-PCR检测呈差异表达的miR-155和miR-208的预测靶基因mRNA表达.结果显示,SHR大鼠主动脉miR-155表达在4、8、24周时与同龄WKY大鼠无显著差异,但在16周时明显低于同龄WKY大鼠(P<0.05),且大鼠主动脉miR-155表达量与血压呈负相关(r=-0.525,P<0.05).MiR-208表达在4周龄时最高,随年龄增长明显下降(P<0.05),其表达水平与血压和年龄呈负相关(r=-0.400,P<0.05;r=-0.684,P<0.0001),但在SHR和WKY大鼠之间无显著差异.miR-1和miR-133a在各年龄组SHR和WKY大鼠间未呈现差异表达.MiR-155和miR-208表达与相应预测靶基因mRNA表达无显著负相关性.以上结果表明,miR-155表达在成年SHR大鼠主动脉明显低于WKY,并与血压呈负相关,提示miR-155可能参与高血压的发生发展,主动脉miR-155表达异常可能是SHR大鼠血压升高的原因之一.大鼠主动脉miR-208表达在幼年时最高,随年龄增长而明显下降,提示其可能与血管发育有关.  相似文献   

7.
Prolonged isometric relaxation in hypertensive aortic and caudal arterial smooth muscle has been demonstrated; however, isobaric relaxation in resistance arteries is more pertinent to studies in hypertension. A comparative study of mesenteric arterial isobaric relaxation times was made using spontaneously hypertensive rats (SHR), normotensive Wistar-Kyoto rats (WKY), and MK-421 treated SHR (treatment commenced at 8 weeks of age and was maintained until sacrifice). Relaxation rates of vessels constricting against a range of pressures and achieving different degrees of narrowing or changes in circumference were analyzed. Comparisons were made between SHR, WKY, and MK-421 treated SHR arteries that had constricted from the same initial circumference and against the same magnitude of pressure. The SHR mesenteric arteries relaxed at a slower rate than did the WKY vessels. The normotensive MK-421 treated SHR showed the same prolonged relaxation rate as did the untreated SHR preparations. Thus the slower rate of relaxation in SHR arteries does not appear to be a consequence of the hypertension. Such prolonged time for narrowing would function to increase the average peripheral resistance and thus may contribute to the initiation and maintenance of increased blood pressure.  相似文献   

8.
To identify the new targets for hypertension, we analyzed the protein expression profiles of aortic smooth muscle in spontaneously hypertensive rats (SHR) of various ages during the development of hypertension, as well as in age‐matched normotensive Wistar–Kyoto (WKY) rats, using a proteomic analysis. The expressions of seven proteins were altered in SHR compared with WKY rats. Of these proteins, NADH dehydrogenase 1α, GSTω1, peroxi‐redoxin I and transgelin were upregulated in SHR compared with WKY rats. On the other hand, the expression of HSP27 and Ran protein decreased in SHR. The diminution of dihydrobiopterin reductase, an enzyme located in the regeneration pathways of tetrahydrobiopterin (BH4), was also prominent in SHR. The results from a PCR analysis revealed that the expression of BH4 biosynthesis enzymes – GTP cyclohydrolase‐1 and sepiapterin reductase – decreased and increased, respectively, in SHR compared with WKY rats. The level of BH4 was less in aortic strips from SHR than from WKY rats. Moreover, treatment with BH4 inhibited aortic smooth muscle contraction induced by serotonin. These results suggest that the deficiency in BH4 regeneration produced by diminished dihydrobiopterin reductase expression is involved in vascular disorders in hypertensive rats.  相似文献   

9.
In situ analysis of microvascular pericytes in hypertensive rat brains   总被引:2,自引:0,他引:2  
We used immunofluorescence microscopy and isoactin-specific antibodies to characterize the pattern and prevalence of pericytes within the brain microcirculation. Blood pressures of normotensive, Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats were measured prior to sacrifice and pressure-perfusion fixation. WKY and SHR brains were subdivided into ten major regions prior to ultracryomicrotomy. Sections 0.3-0.5 micron wide were treated with 10-40 micrograms/ml affinity-purified antibodies to the muscle and non-muscle actin isoforms. These localization studies show that there are four times the number of pericyte-rich capillaries in the SHR motor cortex compared to WKY counterparts (59.9 vs. 15.3%). In contrast, the sensory cortex of both rat strains is deficient in muscle actin staining surrounding the capillaries. The most striking difference in pericyte presence and muscle actin antibody staining between the SHR and WKY was observed in the tegmentum of the brainstem. There is nearly a one-to-one coincidence observed in pericyte and capillary profiles present within thin, frozen sections of the SHR midbrain. SHR pons capillaries were also pericyte-enriched. WKY analyses of plastic embedded thin sections confirmed the presence of pericytes and their filament-enriched processes encircling the capillaries of the hypertensive brains. These results suggest that pericytes may play important roles in hypertension and cerebrovascular disease processes.  相似文献   

10.
Spontaneously hypertensive rats (SHR), which develop hypertension approximately 10 weeks after birth, are considered to provide a good animal model for human essential hypertension. We report here that the abnormal activation of phospholipase C delta 1 (PLC-delta 1) may be one of the main causes of hypertension. Levels of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol are found to be higher in the aortas of 12-week-old SHR than in age-matched normotensive Wistar-Kyoto rats (WKY), although the levels in the aortas of 7-week-old SHR, which have normal blood pressure, are the same as in WKY. Moreover, PLC activity is also higher in the aortas of 12-week-old SHR. Judging from Western blot analysis and immunoabsorption of PLCs, this activation is found to be due to that of PLC-delta 1. PLC-delta 1 from rat aorta is expressed significantly from 7 to 12 weeks, which correlates with the development of hypertension in SHR. The activity of PLC-delta 1 in the aortas of 12-week-old SHR is more markedly activated at low Ca2+ concentration than that of age-matched WKY. These results suggest that the abnormal enhancement of PLC-delta 1 activity is responsible for accumulation of inositol 1,4,5-trisphosphate and diacylglycerol, leading to continuous hypertonicity of vascular smooth muscle in SHR. The activity of PLC-delta 1 in the aortas of 12-week-old SHR is significantly higher at low Ca2+ concentration than that of normotensive WKY.  相似文献   

11.
Close links between hypertension, hypertriglyceridemia, insulin resistance and other symptoms of metabolic syndrome was demonstrated in humans and experimental animals. Quantitative trait loci for defects in glucose and fatty acid metabolism, hypertriglyceridemia and hypertension were mapped in spontaneously hypertensive rats (SHR) on chromosome 4 and defective Cd36 gene was identified in this region. Here we investigated the polymorphism of Cd36 gene in Prague hereditary hypertriglyceridemic (HTG) rats, which represent another model of genetic hypertension and metabolic syndrome. These animals were compared with NIH-derived SHR and two different normotensive control strains (WKY, LEW). In spite of the fact that HTG and SHR rats had similar metabolic disturbances, genotype analysis of PCR products has shown that Cd36 mutation was not present in HTG rats. In conclusion, we have revealed that defective Cd36 is probably a candidate gene for disorded fatty-acid metabolism, glucose intolerance and insulin resistance in NIH-derived SHR, but other genes might play a role in pathogenesis of metabolic syndrome in Prague hereditary hypertriglyceridemic rats. This is in accordance with the absence of defective Cd36 gene in original SHR from Japan.  相似文献   

12.
Angiotensin-converting enzyme (ACE) (kinase II; dipeptidyl carboxypeptidase, EC 3.4.15.1) activity was measured in pituitary gland of young (4-week-old) and adult (18-week-old) male, spontaneously hypertensive rats (SHR) and in age-matched normotensive male Wistar-Kyoto (WKY) control rats. In the three lobes of the pituitary gland ACE activity was significantly higher in young than in adult animals, in both SH and WKY rats. In the anterior lobe, ACE activity was lower in SHR when compared to age-matched Wistar-Kyoto controls. In contrast, ACE activity in the intermediate lobe of the pituitary gland was higher in SHR, and in particular in young animals. The observed differences between young WKY and SH rats in both the intermediate and anterior lobes did not appear to be due to a modified affinity of ACE for the substrate hippuryl-His-Leu, but to alterations in ACE maximal velocity or number of available molecules. No differences in ACE activity were detected between SHR and WKY rats in the posterior lobe. Total protein content was higher in the intermediate lobe and lower in the posterior lobe of young SHR when compared to normotensive controls. The present results suggest the possibility for a role of pituitary ACE in spontaneous (genetic) hypertension in rats.  相似文献   

13.
Kinins are vasoactive peptide hormones that can confer protection against the development of hypertension. Because their efficacy is greatly influenced by the rate of enzymatic degradation, the activities of various kininases in plasma and blood of spontaneously hypertensive rats (SHR) were compared with those in normotensive Wistar-Kyoto rats (WKY) to identify pathogenic alterations. Either plasma or whole blood was incubated with bradykinin (10 microM). Bradykinin and kinin metabolites were measured by high-performance liquid chromatography. Kininase activities were determined by cumulative inhibition of angiotensin I-converting enzyme (ACE), carboxypeptidase N (CPN), and aminopeptidase P (APP), using selective inhibitors. Plasma of WKY rats degraded bradykinin at a rate of 13.3 +/- 0.94 micromol x min(-1) x l(-1). The enzymes ACE, APP, and CPN represented 92% of this kininase activity, with relative contributions of 52, 25, and 16%, respectively. Inclusion of blood cells at physiological concentrations did not extend the activities of these plasma kininases further. No differences of kinin degradation were found between WKY and SHR. The identical conditions of kinin degradation in WKY and SHR suggest no pathogenic role of kininases in the SHR model of genetic hypertension.  相似文献   

14.
To clarify the involvement of phospholipase D (PLD) in the mechanism underlying genetically-induced hypertension, we investigated the activity and expression levels of PLD in tissues taken from spontaneously hypertensive rats (SHR), and their normotensive controls, Wistar-Kyoto rats (WKY). The ADP-ribosylation factor 3 (ARF3)-dependent PLD activity and protein levels of PLD1 from SHR increased significantly in the brain and liver, but not in the heart and kidney, compared to those of WKY. The activity and expression of PLD were the same between the homogenated whole kidneys of the two strains; however, there were topographical differences in the expression and activity of PLD between the kidneys of the two strains. The activity and expression level of PLD gradually increased from the cortex to the inner medulla of WKY. The enzyme activity, and amount of PLD in the inner stripe of the outer medulla and in the inner medulla, was significantly lower in SHR than in WKY. Taken together, these results suggest that the distinctly distributed patterns of PLD in the kidney may be associated with differential signal transduction pathways that are involved in hypertension in conjunction with an increase of PLD activity in the brain and liver.  相似文献   

15.
Ischemic white matter lesions have been reported in rats after bilateral common carotid ligation (BCAL). Previously, comparing normotensive rats (WKY) with spontaneously hypertensive rats (SHR), we too found that sustained moderate ischemia with spontaneous hypertension accelerated the formation of ischemic white matter lesions. In this study, we explored the feasibility of gene therapy for lesioned white matter by means of an adenovirus vector expressing a reporter gene, LacZ. Using sham-operated and hypoperfused SHR as well as sham-operated and hypoperfused WKY, we demonstrated that (i) adenovirus vectors could deliver a foreign gene into oligodendrocytes and astrocytes in the cerebral white matter; (ii) the transduction efficiency was most effective in SHR after BCAL; and (iii) the level of alpha(V)-integrin was significantly correlated with adenoviral transduction efficiency.  相似文献   

16.
Angiotensin-converting enzyme (ACE) activity in serum and lung tissue from both normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) was determined at six different circadian times. In WKY rats serum ACE varied significantly within 24 h, mainly due to reduced enzyme activity at 12:00 h. In SHR the 24-h profile of serum ACE did not exhibit time-dependent differences. Mean serum ACE activity over 24 h was significantly higher in WKY than in SHR. In lung tissue ACE activity did not depend on the circadian time in either strain. Mean enzyme activity in lung tissue was not different between WKY and SHR. We conclude that circadian changes in the activity of serum and tissue ACE are unlikely to play an important role in the regulation of the circadian blood pressure profile in both normotensive and spontaneously hypertensive rats.  相似文献   

17.
To compare the functional state of the superior cervical (SCG) and stellate sympathetic ganglia (SG) of spontaneously hypertensive rats (SHR) with those of age-matched normotensive Wistar Kyoto rats (WKY), ganglion cell volume and area occupied by ganglion cells relative to each whole ganglionic area were morphometrically examined using the Texture Analyse System (TAS) in rats at 0, 10 and 30 days of age. The weight of each ganglion relative to animal weight was also measured. The ganglion cell volume and the relative area of ganglionic cells in both ganglia of SHR were significantly larger (P less than 0.05) than those of age-matched WKY at ages 0 and 10 days after birth. The relative ganglionic weights of SHR were significantly larger (P less than 0.01) compared with those of WKY at all ages examined, except for SG at 0 days after birth. These results show that the relative volume of sympathetic ganglion cells is greater in both SCG and SG of SHR than that of WKY, suggesting that hyperfunction of sympathetic ganglia occurs at the prehypertensive stage as a primary factor in the development of hypertension in SHR.  相似文献   

18.
Spontaneously hypertensive rats (SHR) are the most extensively used animal model for genetic hypertension, increased stroke damage, and insulin resistance syndromes; however, the identification of target genes has proved difficult. SHR show elevated sympathetic nerve activity, and stimulation of the central blood pressure control centers with glutamate or nicotine results in exaggerated blood pressure responses, effects that appear to be genetically determined. Kynurenic acid, a competitive glutamate antagonist and a non-competitive nicotinic antagonist, can be synthesized in the brain by the enzyme kynurenine aminotransferase-1 (KAT-1). We have previously shown that KAT-1 activity is significantly reduced in SHR compared with normotensive Wistar Kyoto rats (WKY). Here we show that KAT-1 contains a missense mutation, E61G, in all the strains of SHR examined but not in any of the WKY or outbred strains. Previous studies on F2 rats from a cross of stroke-prone SHR and WKY have shown a suggestive level of linkage between elevated blood pressure and the KAT-1 locus on chromosome 3. In addition, the mutant enzyme expressed in Escherichia coli displays altered kinetics. This mutation may explain the enhanced sensitivity to glutamate and nicotine seen in SHR that may be related to an underlying mechanism of hypertension and increased sensitivity to stroke.  相似文献   

19.
Angiotensin-converting enzyme (ACE) activity in serum and lung tissue from both normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) was determined at six different circadian times. In WKY rats serum ACE varied significantly within 24 h, mainly due to reduced enzyme activity at 12:00 h. In SHR the 24-h profile of serum ACE did not exhibit time-dependent differences. Mean serum ACE activity over 24 h was significantly higher in WKY than in SHR. In lung tissue ACE activity did not depend on the circadian time in either strain. Mean enzyme activity in lung tissue was not different between WKY and SHR. We conclude that circadian changes in the activity of serum and tissue ACE are unlikely to play an important role in the regulation of the circadian blood pressure profile in both normotensive and spontaneously hypertensive rats.  相似文献   

20.
The density of catecholamine-containing nerve fibers was studied in the cerebral and mesenteric arteries from normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and stroke-prone SHR (SHRSP) in the growing (SHR, WKY) and adult (SHR, SHRSP, WKY) animals. Cerebral arteries from SHR showed an increased adrenergic innervation from day 1. The nerve plexuses reached an adult pattern earlier in SHR than in WKY. The arteries from adult SHR and SHRSP (22 weeks old) showed a markedly higher nerve density than WKY. There was a positive linear correlation between blood pressure and nerve density for four cerebral arteries. The mesenteric arteries were not innervated at birth. However, hyperinnervation of these arteries in the SHR was already present at 10 days of age as compared with WKY. Sympathectomy with anti-nerve growth factor and guanethidine caused a complete disappearance of fluorescent fibers in the mesenteric arteries from SHR and WKY, and in the cerebral arteries of WKY. The same procedure caused only partial denervation of the cerebral arteries from hypertensive animals. We postulate that the increase in nerve density in the cerebral arteries from the hypertensive rats may contribute to the development of arterial hypertrophy in chronic hypertension through the trophic effect of the sympathetic innervation on vascular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号