首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cumulative effect of many local forest disturbances can be estimated from an analysis of forest distribution at the scale of the entire landscape. To gauge the regional impact of forest clearance and regeneration, a history of forest cover was compiled for the twentieth century in the hinterland of a large city (Wilmington, Delaware, U.S.A.). Forest distribution and character were described by point sampling of historical aerial photographs. Environmental features were measured on visits to sample points in the field. Regional forest coverage has grown from c . 5% in 1890 to 22% in 1990. Most modern stands are <60 years old; only 2.5% of the modern landscape is in forest more than 100 years old. Since 1890, patterns of clearance and regeneration have caused a proportional shift in forest cover from uplands to lowlands and flood plains. Older stands are found on rock fields and steep slopes, indicating abandonment from agriculture according to the quality of local sites. Residential development has been concentrated in uplands, precluding regeneration of forest in that landscape position. In general, land use turnover reflects the character of the local site; there is no evidence of region-wide gradients of regeneration or clearance. Modern forest is concentrated along steep-sided stream valleys and away from roads. The great majority of forest lies within 50 m of a forest margin placing it in the microclimatic and vegetational edge zone. Although most forest is within 200 m of a residence, pedestrian traffic appears to have had only a minor impact in the biological community. By contrast, widespread species impoverish- ment is suggested by the overwhelming youthfulness of modern forest and the low degree of connectedness of forest within the landscape. Management for biological conservation should focus on protection of remnant primary forest, rather than relying on succession to restock secondary stands.  相似文献   

2.
Aim Climate, topography and soils drive many patterns of plant distribution and abundance across landscapes, but current plant communities may also reflect a legacy of past disturbance such as agricultural land use. To assess the relative influences of environmental conditions and disturbance history on vegetation, it is important to understand how these forces interact. This study relates the geographical distribution of land uses to variation in topography and soils; evaluates the consequences of land‐use decisions for current forests; and examines the effects of agricultural land use on the chemical properties of forest soils. Location Tompkins County occupies 1250 km2 in central New York's Finger Lakes region. Like much of eastern North America, this area underwent forest clearance for agriculture during the 1800s and widespread field abandonment and forest recovery during the 1900s. The current landscape consists of a patchwork of forests that were never cleared, forests that developed on old fields and active agricultural lands. Methods We investigated relationships among topography, soils and land‐use decisions by gathering information about land‐use history, slope, aspect, elevation, soil lime content, soil drainage and accessibility in a geographic information system (GIS). To assess the effects of agriculture on forest soil chemistry, we measured pH, organic matter content and extractable nutrient concentrations in field‐collected soil samples from 47 post‐agricultural and uncleared forests. Results Steeper slopes, less accessible lands and lower‐lime soils tended to remain forested, and farmers were more likely to abandon fields that were steeper, farther from roads, lower in lime and more poorly drained. Slope had by far the greatest impact on patterns of clearance and abandonment, and accessibility had a surprisingly strong influence on the distribution of land uses. The effects of other factors varied more, depending for example on location within the county. Current forest types differed accordingly in topography and soil attributes, particularly slope, but they also showed much overlap. Post‐agricultural and uncleared forest soils had similar chemical properties. Forests on lands abandoned from agriculture 80–100 years before had slightly higher pH and nutrient concentrations than adjacent, uncleared forests, but these changes were small compared to environmental variation across the county. Main conclusions Despite differential use of lands according to their topography and soils, the substantial influence of accessibility and the relatively small scale of land‐use decisions allowed for broad similarity among forest types. Thus, the topography and soil differences created by land‐use decisions probably contribute little to landscape‐level patterns of diversity. Subtle changes in forest soil chemistry left from past agriculture may nevertheless affect plant distribution and abundance at finer scales.  相似文献   

3.
In the last 350 years, forests of eastern North America have experienced widespread clearance and regrowth with local variation in timing and extent determined by patterns of human land use. This paper describes the history of forest in the hinterland of a large city (Wilmington, Delaware) surrounded by fertile soils and having access to a navigable estuary. Forests were cleared between 1650 and 1780 to accommodate shifting cultivation of cereal crops and to provide fuelwood for nearby cities. Proximity to urban markets supported a vigorous agricultural economy through the 19th century and delayed widespread forest regeneration. Reforestation began on a large scale following the local decline of agriculture 1920–1940. In the late 20th century, forest competes for land with suburban housing. Although a similar sequence has occurred throughout eastern North America, the study area is unique in that a larger proportion of original forest was cleared and reforestation began much later than in other regions. Today, the history of land use is evident in the high proportion of young, successional forest and the very small area of long-established forest.  相似文献   

4.
In this study we analyzed if characteristic calcareous grassland species persist in forest habitats after land use change. Furthermore, we investigated whether the current distribution of such species is related to historical land use of the mid-19th century. Current distributions of nine calcareous grassland species were recorded in a region of Upper Franconia, Germany. Historical (up to 1850) and current land-use data were analyzed using historical maps and aerial photographs. To study the effects of historical land use in current species distributions, we used Generalized Estimating Equations (GEE) and ANOVA, accounting for spatial autocorrelation. Variance partitioning was applied to separate the influence of historical versus current land use. On average 26% of the recorded grassland species occurrences are located in sub-optimal forest habitats. Grassland populations are likely to persist in forest for at least 50 years. Even though current land use explains a higher proportion of the variation in species distribution than historical land use alone, model fit could be significantly improved (P?<?0.001) considering the historical component. We conclude that consideration of historical land use is essential to understand the current grassland species distributions and may be of general importance for perennial species of temperate grasslands. In addition, historical legacy has far-reaching implications for conservation biology in terms of realistic assessments of species threat status in present landscapes.  相似文献   

5.
Human land-use activities differ from natural disturbance processes and may elicit novel biotic responses and disrupt existing biotic-environmental relationships. The widespread prevalence of land use requires that human activity be addressed as a fundamental ecological process and that lessons from investigations of land-use history be applied to landscape conservation and management. Changes in the intensity of land use and extent of forest cover in New England over the past 3 centuries provide the opportunity to evaluate the nature of forest response and reorganization to such broad-scale disturbance. Using a range of archival data and modern studies, we assessed historical changes in forest vegetation and land use from the Colonial period (early 17th century) to the present across a 5000 km2 area in central Massachusetts in order to evaluate the effects of this novel disturbance regime on the structure, composition, and pattern of vegetation and its relationship to regional climatic gradients. At the time of European settlement, the distribution of tree taxa and forest assemblages showed pronounced regional variation and corresponded strongly to climate gradients, especially variation in growing degree days. The dominance of hemlock and northern hardwoods (maple, beech, and birch) in the cooler Central Uplands and oak and hickory at lower elevations in the Connecticut Valley and Eastern Lowlands is consistent with the regional distribution of these taxa and suggests a strong climatic control over broad-scale vegetation patterns. We infer from historical and paleoecological data that intensive natural or aboriginal disturbance was minimal in the Uplands, whereas infrequent surface fires in the Lowlands may have helped to maintain the abundance of central hardwoods and to restrict the abundance of hemlock, beech, and sugar maple in these areas. The modern vegetation is compositionally distinct from Colonial vegetation, exhibits less regional variation in the distribution of tree taxa or forest assemblages defined by tree taxa, and shows little relationship to broad climatic gradients. The homogenization of the vegetation, disruption of vegetation-environment relationships, and formation of new assemblages appear to be the result of (a) a massive, novel disturbance regime; (b) ongoing low-intensity human and natural disturbance throughout the reforestation period to the present; (c) permanent changes in some aspects of the biotic and abiotic environment; and (d) a relatively short period for forest recovery (100–150 years). These factors have maintained the regional abundance of shade intolerant and moderately tolerant taxa (for example, birch, red maple, oak, and pine) and restricted the spread and increase of shade-tolerant, long-lived taxa such as hemlock and beech. These results raise the possibility that historical land use has similarly altered vegetation-environment relationships across broader geographic regions and should be considered in all contemporary studies of global change. Received 5 May 1997; accepted 5 August 1997.  相似文献   

6.
High rates of deforestation in the Brazilian Amazon have the potential to alter the storage and cycling of carbon (C) and nitrogen (N) across this region. To investigate the impacts of deforestation, we quantified total aboveground biomass (TAGB), aboveground and soil pools of C and N, and soil N availability along a land-use gradient in Rondônia, Brazil, that included standing primary forest, slashed primary and secondary forest, shifting cultivation, and pasture sites. TAGB decreased substantially with increasing land use, ranging from 311 and 399 Mg ha–1 (primary forests) to 63 Mg ha–1 (pasture). Aboveground C and N pools declined in patterns and magnitudes similar to those of TAGB. Unlike aboveground pools, soil C and N concentrations and pools did not show consistent declines in response to land use. Instead, C and N concentrations were strongly related to percent clay content of soils. Concentrations of NO3-N and NH4-N generally increased in soils following slash-and-burn events along the land-use gradient and decreased with increasing land use. Increasing land use resulted in marked declines in NO3-N pools relative to NH4-N pools. Rates of net nitrification and N-mineralization were also generally higher in postfire treatments relative to prefire treatments along the land-use gradient and declined with increasing land use. Results demonstrate the linked responses of aboveground C and N pools and soil N availability to land use in the Brazilian Amazon; steady reductions in aboveground pools along the land-use gradient were accompanied by declines in inorganic soil N pools and transformation rates.  相似文献   

7.
不同土地利用类型下土壤光谱信息存在差异,了解不同土地利用类型下合适的建模方法可以高效准确地进行土壤有机碳含量反演。本研究以江西省奉新县中北部林地、耕地和园地3种土地利用类型共248个土壤样本为对象,首先对土壤原始光谱反射率曲线使用Savitzky-Golay(SG)滤波去噪并进行10 nm重采样减少数据冗余,之后采用偏最小二乘回归(PLSR)、基于网格搜索法的支持向量机回归(GRID-SVR)和基于粒子群算法的支持向量机回归(PSO-SVR)3种方法分别构建土壤有机碳含量的反演模型。结果表明: 构建单一土地利用类型反演模型时,PLSR方法在林地、耕地和园地的相对分析误差(RPD)分别为1.536、1.315和1.493,采用GRID-SVR方法时,其RPD分别提升0.150、0.183和0.502。采用PSO-SVR方法时精度最高,相较GRID-SVR方法,其林地、耕地和园地的RPD分别提高20.8%、10.0%和2.7%,林地和园地的RPD分别为2.036和2.049,可以极好地预测土壤有机碳含量,耕地的RPD为1.647,可以对土壤有机碳含量进行粗略估测。PSO-SVR方法对不同土地利用类型土壤有机碳反演效果最优,林地和园地土壤有机碳含量的反演精度相近且高于耕地。研究区不同土地利用类型对土壤有机碳含量的反演结果存在一定的影响,今后可以考虑在反演土壤有机碳时分不同土地利用类型进行建模。  相似文献   

8.
The origin of present forest composition and pattern in southern Sweden   总被引:5,自引:0,他引:5  
Abstract. Deciduous forests in much of southern Sweden are often located on former ‘in-field’ sites close to farms and villages. The more distant ‘out-field’ sites are almost always dominated by conifers. Using palaeecological methods, we investigate the origin of this forest pattern at a small estate in Småland, southern Sweden that was the birthplace of Carl Linnaeus. Prior to extensive permanent settlement (c.ad 1100) both in-fields and out-fields supported a rich, mixed deciduous forest that was irregularly ravaged by forest fire. After ad 1100 the in-field site was transformed into a species-rich forest-meadow system with tree composition similar to the pre-cultural state with the addition of Fagus sylvatica L. The out-field sites were used for grazing and slash-and-burn agriculture, but nevertheless maintained a high degree of forest continuity. Forest composition however changed from deciduous to coniferous dominance. Floristic diversity is closely linked to human activity. Herbaceous diversity is greatest during the earliest phase of the forest-meadow system. It declines during the late-mediaeval agrarian crisis and again during the over-exploitation of the late nineteenth century. Diversity returns to pre-cultural levels after the abandonment of the forest-meadow system during the present century. Present forest composition and pattern in the study area are closely related to former human activities and are not primarily a function of soil type or present-day management.  相似文献   

9.
 应用KMnO4氧化法测定分析了六盘山林区天然次生林(杂灌林、山杨(Populus davidanda)和辽东栎(Querces liaotungensis)林)、农田、草地和人工林(13、18和25年华北落叶松(Larix principis-rupprechtii))土壤活性有机碳含量及分配比例的差异。结果表明:农田和草地土壤活性有机碳含量比天然次生林分别低60%和36%,差异主要在0~70 cm土层;人工林比农田和草地分别高129%和29%,差异主要在0~50 cm土层。农田和草地土壤活性有机碳分配比例比天然次生林分别低11%和4%以上, 差异主要在0~20 cm与70~110 cm土层;人工林比农田和草地分别高13.3%和5.3%,差异主要在0~110 cm土层。土壤活性有机碳含量和分配比例随土层加深而递减,其中天然次生林和人工林土壤活性有机碳含量随土层加深而递减的幅度比农田和草地中大,农田土壤活性有机碳分配比例随土层加深而递减幅度较大。不同土地利用方式间土壤活性有机碳含量的差异比活性有机碳分配比例的差异大,土壤活性有机碳含量随土层加深而递减的幅度比分配比例随土层加深而递减的幅度大。这可能由土壤有机碳的输入、稳定性、质量和根系分布等差异所致。结果说明土壤活性有机碳含量和分配比例随天然次生林变成农田或草地而降低,随农田或草地中造林而增加,且土壤活性有机碳含量的变化幅度比分配比例大。另外,土壤活性有机碳含量和分配比例在土壤剖面的分布也随土地利用变化而改变,其中活性有机碳含量的变化幅度比分配比例大。  相似文献   

10.
The tracking of land use since 1990 presents a major challenge in greenhouse gas (GHG) reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol because there is often limited availability of data, especially for the base year of 1990. There is even less land management and soil moisture data, which are needed to track climate change mitigation activities since soil moisture is one of the main drivers of GHG emissions of organic soils. Information is also needed for the reporting of land-based activities such as grazing land management or wetland drainage and rewetting of organic soils. Different spatial and thematic resolutions of land-use data produce inconsistent time series with a strong overestimation of land-use change (LUC) if not adequately accounted for. Our aim was to create a consistent time series of land use since 1990 that is in line with GHG reporting under the UNFCCC and the Kyoto Protocol by combining official cadastral data with colour-infrared aerial photography used for biodiversity monitoring in six federal states in northern and eastern Germany. We developed a generic hierarchical classification by land use, management and drainage status, and a translation key for data harmonisation into a consistent time series. This time series enabled the quantification of LUC on organic soils between 1992 and 2013 in a spatially explicit manner. Furthermore we used this time series to develop indicators for changes in land management and drainage to evaluate the success of protection statuses on peatland restoration.The study area encompassed one million hectares, half of which had some type of legal nature protection status. Areas with no protection status tended to become more intensively farmed and drier, while highly protected areas (e.g. Natura 2000) showed the opposite trend. Land-use trends also differed greatly between federal states. In Schleswig-Holstein organic soils tended to become drier during the study period, while in Mecklenburg-Western Pomerania they tended to become wetter overall. The trends and differences in LUC between federal states were linked to German reunification, changes in the European Common Agricultural Policy (CAP) and Germany's Renewable Energy Act (EEG). A large-scale peatland protection programme also had major impact.In conclusion, our study demonstrates how data derived for biodiversity monitoring and other highly detailed land-use data can be used to track changes in land use, management and drainage status in accordance with the reporting requirements under the UNFCCC and the Kyoto Protocol.  相似文献   

11.
Vegetation data in an early 20th century map from northern Tanzania are presented and discussed for its potential of expanding the analytical time-frame in studies of land-use and land-cover change. The starting point is that much research on land-use and land-cover change suffers from a time-frame bias, caused by limitations in remote sensing data. At the same time, the use of historical maps as a complementary data-set is rather insignificant. Can information in historical maps be used to extend the baseline in land-use and land-cover change studies? The historical context of the vegetation data is evaluated, and as an illustration of its potential for interdisciplinary research on land-cover and ecosystems change, a section of the map is juxtaposed with a recent pollen record specifically addressing the impact of a 'large infrequent disturbance' (LID) event at the end of the 19th century. It is concluded that the vegetation data in the map are not likely to be reflecting an extreme situation due to the LID event. Finally, the historical vegetation data were visually compared with a national 1995 land-cover data set, illustrating the possibility of using the map data as a baseline in land-cover change studies.  相似文献   

12.
Abstract. Throughout the eastern United States, plant species distributions and community patterns have developed in response to heterogeneous environmental conditions and a wide range of historical factors, including complex histories of natural and anthropogenic disturbance. Despite increased recognition of the importance of disturbance in determining forest composition and structure, few studies have assessed the relative influence of current environment and historical factors on modern vegetation, in part because detailed knowledge of prior disturbance is often lacking. In the present study, we investigate modern and historical factors that control vegetation patterns at Harvard Forest in central Massachusetts, USA. Similar to the forested uplands throughout the northeastern United States, the site is physiographically heterogeneous and has a long and complex history of natural and anthropogenic disturbance. However, data on forest composition and disturbance history collected over the past > 90 years allow us to evaluate the importance of historical factors rigorously, which is rarely possible on other sites. Soil analyses and historical sources document four categories of historical land use on areas that are all forested today: cultivated fields, improved pastures/mowings, unimproved pastures, and continuously forested woodlots. Ordination and logistic regressions indicate that although species have responded individualistically to a wide range of environmental and disturbance factors, many species are influenced by three factors: soil drainage, land use history, and C:N ratios. Few species vary in accordance with ionic gradients, damage from the 1938 hurricane, or a 1957 fire. Contrary to our expectation that the effects of disturbance will diminish over time, historical land use predicts 1992 vegetation composition better than 1937 composition, perhaps because historical woodlots have become increasingly differentiated from post-agricultural stands through the 20th century. Interpretations of modern vegetation must consider the importance of historical factors in addition to current environmental conditions. However, because disturbances such as land use practices and wind damage are complex, it is often difficult to detect disturbance effects using multivariate approaches, even when the broad history of disturbance is known.  相似文献   

13.
 应用土壤培养法,比较分析了六盘山林区天然次生林(杂灌林、山杨(Populus davidanda)和辽东栎(Quercus liaotungensis)林)、农田、草地和人工林(13 a、18 a和25 a华北落叶松(Larix principis-rupprechtii))土壤在30℃和60%田间饱和含水量条件下培养180 d有机碳矿化速率的差异(以180 d累计释放的CO2-C计)。结果显示:农田和草地土壤碳矿化释放的CO2-C含量(180 d释放的gCO2-C·kg-1干土)分别比天然次生林低65%和23%,差异主要在0~40土层;人工林比农田和草地分别高155%和 17%,差异主要在0~70 cm土层。农田土壤碳矿化释放的CO2-C分配比例(即180 d释放CO2-C/土壤 C)比天然次生林平均低12%,草地比天然次生林平均高18%,差异主要在0~40 cm土层;人工林比农田平均高29%,草地比人工林平均高9%,差异主要在0~50 cm土层。不同土地利用方式土壤碳矿化释放的CO2-C含量的差异比其分配比例的差异大。土壤碳矿化释放的CO2-C含量和分配比例总体上都随土层加深而递减。分配比例随土层加深而递减的幅度方面,不同土地利用方式间的差异不大;含量随土层加深而递减的幅度方面,天然次生林和人工林比农田和草地中大;随土层递减的幅度方面,土壤碳矿化释放的CO2-C含量比其分配比例大。这主要由不同土地利用方式土壤碳输入和稳定性等差异所致。结果说明土壤碳矿化速率随天然次生林变成农田或草地而下降,随在农田或草地上造林而增加, 矿化速率变化幅度比分配比例的变化幅度大。另外,土地利用变化也使不同土层土壤碳矿化速率和分配比例差异改变,其中速率改变的幅度比分配比例改变的幅度大。  相似文献   

14.
At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical “land management” practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species’ habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species.  相似文献   

15.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

16.
The long residence time of carbon in forests and soils means that both the current state and future behavior of the terrestrial biosphere are influenced by past variability in climate and anthropogenic land use. Over the last half‐millennium, European terrestrial ecosystems were affected by the cool temperatures of the Little Ice Age, rising CO2 concentrations, and human induced deforestation and land abandonment. To quantify the importance of these processes, we performed a series of simulations with the LPJ dynamic vegetation model driven by reconstructed climate, land use, and CO2 concentrations. Although land use change was the major control on the carbon inventory of Europe over the last 500 years, the current state of the terrestrial biosphere is largely controlled by land use change during the past century. Between 1500 and 2000, climate variability led to temporary sequestration events of up to 3 Pg, whereas increasing atmospheric CO2 concentrations during the 20th century led to an increase in carbon storage of up to 15 Pg. Anthropogenic land use caused between 25 Pg of carbon emissions and 5 Pg of uptake over the same time period, depending on the historical and spatial pattern of past land use and the timing of the reversal from deforestation to afforestation during the last two centuries. None of the currently existing anthropogenic land use change datasets adequately capture the timing of the forest transition in most European countries as recorded in historical observations. Despite considerable uncertainty, our scenarios indicate that with limited management, extant European forests have the potential to absorb between 5 and 12 Pg of carbon at the present day.  相似文献   

17.
盛浩  宋迪思  周萍  夏燕维  张杨珠 《生态学报》2017,37(14):4676-4685
了解底土溶解性有机质(DOM)的数量和化学结构对土地利用变化的响应,对科学评价区域土壤有机质动态和碳库稳定性具有重要意义。通过选取花岗岩红壤丘陵区同一景观单元的天然林地(常绿阔叶林)以及由此转变而来的杉木人工林、板栗园和坡耕地,采用化学分析结合光谱扫描(紫外光谱、二维荧光光谱和傅里叶变换红外光谱)技术,研究底土(0.2—1 m)和表土(0—0.2 m)DOM数量和结构对土地利用变化的响应差异,结果表明:58%—87%的DOM贮存在底土中。天然林地土壤的DOM数量最为丰富,底土DOM的宏观化学结构比表土更为简单,以碳水化合物、类蛋白为主。天然林转变为其他利用方式后,底土DOM的损失量(26%—41%)超过表土(12%—49%),冬季比夏季更为凸显;这反映底土DOM数量对人为干扰和植被变化的高度敏感性。同时,底土DOM宏观化学结构趋于复杂化,芳香类、烷烃类和烯烃类的化学抗性物质出现积累的现象。DOM光谱曲线形状、特定峰值、特征值对土地利用的响应敏感,对人为干扰后植被、土壤有机质的变化具有生态指示意义。研究显示,天然林地转变为其他利用方式后,不仅导致底土DOM的损失,也显著降低土壤有机质品质,长期上削弱底土的碳库稳定性和碳吸存能力。  相似文献   

18.
Although deforestation continues to be a major threat to tropical biodiversity, abandonment of agricultural land in Puerto Rico provides an opportunity to study long-term patterns of secondary forest regeneration. Using aerial photographs from 1937, 1967, and 1995, we determined land-use history for 2443 ha in the Cayey Mountains. Pastures were the dominant land cover in 1937 and <20% of the area was classified as forest. Between 1937 and 1995, forest cover increased to 62% due to widespread abandonment of agriculture. To examine the effect of historic land use on current forest structure and species composition, we sampled secondary forests in 24 abandoned pastures, 9 abandoned coffee plantations and 4 old-growth forest sites. Sites were located on two soil types along an elevational gradient (125–710 m) and included a chronosequence from 4 to over 80 years old. After 25–30 years, basal area and species richness in secondary forest sites derived from abandoned pastures and coffee plantations were similar to old-growth forest sites. The species composition of secondary forests derived from abandoned pastures and coffee plantations remained distinct from old-growth forest. In addition to historic land use, age and elevation were important environmental variables explaining variation in secondary forest species composition. Non-indigenous species were common in recently abandoned pastures and coffee plantations, but their importance declined in the older sites. This study demonstrates that secondary forests on private land can be an important component of the conservation of tropical tree biodiversity. Received 16 June 1999; Accepted 8 October 1999.  相似文献   

19.
中梁山岩溶槽谷区不同土地利用方式坡地产流规律   总被引:4,自引:1,他引:3  
吴泽  蒋勇军  姜光辉  王正雄  贺秋芳  白莹 《生态学报》2019,39(16):6072-6082
坡地产流是造成岩溶区水土流失的主要驱动力,研究典型岩溶槽谷区坡地产流规律,对岩溶区防治水土流失、合理利用地下水资源具有重要理论意义。在重庆市中梁山龙凤和龙车槽谷选取不同土地利用方式的4个标准径流小区,对降水、地表径流、壤中流、裂隙流和土壤含水率进行了同步监测,探讨了坡地产流特征。结果表明:(1)4个不同土地利用方式的径流小区,坡地总产流量从大到小依次为:耕地(3696.9L)果园地(3657.2L)竹林地(2922.9L)林地(2211.1L),总径流系数(3.1%—5.2%)远低于非岩溶区(约20%);(2)4个径流小区的产流形式主要为地表径流,壤中流和裂隙流产生滞后于地表径流;(3)降水因子、前期土壤含水率共同影响地表径流,但降水因子对地表径流的影响远大于前期土壤含水率。降水因子中,15min最大雨强是影响耕地、果园地的地表径流的主要因素,降水量是影响林地、竹林地的地表径流的主要因素;前期土壤含水率对耕地、林地、果园地地表径流影响较大,对竹林地地表径流影响较小。  相似文献   

20.
Soil charcoal is an indicator of Holocene fires as well as a palaeoecological signature of pre-Colombian land use in Neotropical rain forests. To document rain forest fire history, we examined soil charcoal patterns in continuous old-growth forests along an elevational transect from sea level to the continental divide on the Atlantic slope of Costa Rica. At 10 elevations we sampled 1-ha plots, using 16 cores/ha to collect 1.5-m deep soil samples. We found charcoal in soils at every elevation, with total dry mass ranging from 3.18 g/m2 at 2000-m elevation to as much as 102.7 g/m2 at 300 m. Soil charcoal is most abundant at the wettest lowland sites (60–500 m) and less at montane elevations (> 1000 m) where there is less rainfall. Between 30- and 90-cm soil depth, soil charcoal is present consistently and every 1-ha plot has charcoal evidence for multiple fire events. Radiocarbon dates range from 23,240 YBP at 1750-m elevation to 140 YBP at 2600 m. Interestingly, none of the charcoal samples from 2600 m are older than 170 yr, which suggests that forests near the continental divide are relatively young replacement stands that have re-established since the most recent localized volcanic eruption on Volcán Barva. We propose that these old-growth forests have been disturbed infrequently but multiple times as a consequence of anthropogenic and natural fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号