首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Misfolding and misassembly of proteins are major problems in the biotechnology industry, in biochemical research, and in human disease. Here we describe a novel approach for reversing aggregation and increasing refolding by application of hydrostatic pressure. Using P22 tailspike protein as a model system, intermediates along the aggregation pathway were identified and quantitated by size-exclusion high-performance liquid chromatography (HPLC). Tailspike aggregates were subjected to hydrostatic pressures of 2.4 kbar (35,000 psi). This treatment dissociated the tailspike aggregates and resulted in increased formation of native trimers once pressure was released. Tailspike trimers refolded at these pressures were fully active for formation of infectious viral particles. This technique can facilitate conversion of aggregates to native proteins without addition of chaotropic agents, changes in buffer, or large-scale dilution of reagents required for traditional refolding methods. Our results also indicate that one or more intermediates at the junction between the folding and aggregation pathways is pressure sensitive. This finding supports the hypothesis that specific determinants of recognition exist for protein aggregation, and that these determinants are similar to those involved in folding to the native state. An increased understanding of this specificity should lead to improved refolding methods.  相似文献   

2.
Laser light-scattering has been used to investigate the size of native proteoglycan aggregates (PGA-aA1) from day-8 chick limb-bud chondrocyte cultures isolated under associative extraction and purification conditions in 0.4M guanidinium chloride (GdnHCl) solution. Dynamic light-scattering measurements yielded a hydrodynamic radius, Rs, of 244 ± 10 nm for PGA-aA1 in 0.4M GdnHCl, and a weight-average molecular weight (M w) of 150 ± 50 × 106 was obtained from a Zimm plot. Disaggregation in 4.0M GdnHCl aqueous solution yielded proteoglycan subunits (PGS) with Rs = 39 ± 2 nm, M w = 1.6 ± 0.3 × 106, which reassembled in 0.4M GdnHCl to form “reconstituted native” aggregates (PGA-raA1) with Rs = 121 ± 6 nm, M w = 17 ± 3 × 106. A second specimen of PGA-aA1 had Rs = 192 ± 10 nm, M w = 100 ± 10 × 106. The latter value was estimated from an empirical relationship between M w and Rs. After dissociation, this specimen reassembled to form PGA-raA1 with Rs = 85 ± 5 nm, M w = 12 ± 1 × 106. These data are compared with those for a specimen of reconstituted aggregate (PGA-A1) that had been extracted under dissociative conditions and then reaggregated by dialysis to 0.4M GdnHCl aqueous solution, for which Rs = 138 ± 9 nm, M w = 45 ± 8 × 106. From these values, we have calculated the weight-average number of subunits per aggregate Nw: 111 for PGA-aA1 and 12 for raA1 (70 and 7 for the second PGA-aA1 and PGA-raA1 specimen, respectively) as compared to 32 for PGA-A1. The numbers of subunits per aggregate were also determined from electron micrographs of spread specimens. The latter results show the same trends as those obtained by light scattering, but lead in each case to lower numbers of subunits per aggregate. These data demonstrate conclusively that PGA samples exhibit a higher degree of aggregation in solution than visualized in typical electron microscopy (EM) preparations, probably due to disaggregation during EM specimen preparation. Since Nw determined both by light scattering (LS) and by EM are larger for native versus reconstituted aggregate samples, our data point to a more compact aggregation of subunits along the hyaluronic acid (HA) chains in the former.  相似文献   

3.
4.
A multiobjective optimization was performed to maximize native protein concentration and shelf life of ASD, using artificial neural network (ANN) and genetic algorithm (GA). Optimum pH, storage temperature, concentration of protein, and protein stabilizers (Glycerol, NaCl) were determined satisfying the twin objective: maximum relative area of the dimer peak (native state) after 48 h of storage, and maximum shelf life. The relative area of the dimer peak, obtained from size exclusion chromatography performed as per the central composite design (CCD), and shelf life (obtained as turbidity change) served as training targets for the ANN. The ANN was used to establish mathematical relationship between the inputs and targets (from CCD). GA was then used to optimize the above determinants of aggregation, maximizing the twin objectives of the network. An almost fourfold increase in shelf life (~196 h) was observed at the GA-predicted optimum (protein concentration: 6.49 mg/ml, storage temperature: 20.8 °C, Glycerol: 10.02%, NaCl: 51.65 mM and pH: 8.2). Since no aggregation was observed at the optimum till 48 h, all the protein was found at the dimer position with maximum relative area (64.49). Predictions of the finally adapted network also reveal that storage temperature and solvent glycerol concentration plays key role in deciding the degree of ASD aggregation. This multiobjective optimization strategy was also successfully applied in minimizing the batch culture period and determining optimum combination of medium components required for most economical production of actinomycin D.  相似文献   

5.
6.
7.
The control of a continuously operated fermenter at its maximum productivity level gives rise to a difficult control problem as the location of the optimum operating point changes due to the disturbances. In addition, the fermenter exhibits a change in the sign of the steady state gain near the optimum operating point. This study is aimed at developing an on-line optimizing control scheme that can track the changing location of the steady state optimum so as to maximize the fermenter productivity. A nonlinear Laguerre model, whose parameters are estimated on-line, is used for tracking the optimum operating point. The control at the optimum point is achieved using an adaptive nonlinear MPC strategy that uses the nonlinear Laguerre model for prediction. The efficiency of the proposed algorithm is demonstrated by simulating the control of a continuous fermenter that exhibits shift in the location of the optimum operating point in response to the changes in the maximum specific growth rate. The proposed on-line optimizing control strategy is shown to result in a considerable improvement in the closed loop performance even in the presence of measurement noise.  相似文献   

8.
The removal of polymeric proteins from their monomers is a frequently encountered separation task, especially in the polishing step of therapeutic proteins. Continuous separation of protein polymers from monomers by annular chromatography using size exclusion chromatography has been studied regarding the resolution, recovery, fouling, and productivity and has been compared to conventional chromatography. An IgG preparation rich in aggregates was used as a model protein mixture. Under conditions that maximized the throughput, the polymers could be separated from the monomers, but baseline separation could not be achieved. Baseline separation was also not possible in batch mode using equivalent conditions, which was also confirmed by computer simulation. For separation of the aggregates from the product the entire available separation space (360 degrees ) was indispensable. Therefore only cyclic, discontinuous regeneration could be carried out. Loading was identified as a critical step, since the concentrated protein solution evaded into the headspace instead of migrating into the gel where viscous fingering often occurs in conventional chromatography. The productivity of annular chromatography was two times higher than that of the conventional batch chromatography, and the buffer consumption was reduced to half the conventional value. These two benefits are especially important for protein separation processes that suffer from low loadability, such as size exclusion chromatography. We have demonstrated that size exclusion can be performed on an industrial scale when it is run continuously with the aid of a pressurized annular chromatograph.  相似文献   

9.
甲醛诱导Tau蛋白形成“孔道样”聚集结构   总被引:3,自引:1,他引:2  
尽管Lin等(University of California, Santa Barbara)就蛋白构象病中细胞死亡的机制提出了“非特异性淀粉样离子通道”(aspecific amyloid ion channels)学说,但到目前为止,尚未发现神经Tau蛋白能形成“孔道样”聚集结构,也未寻找到可以导致蛋白质形成“孔道样”聚集结构的诱导剂.依据本实验室提出的“散发性老年痴呆发生发展中的内源性甲醛慢性损伤”假说,采用一定浓度的甲醛与Tau蛋白进行温育,观察到甲醛可以明显诱导Tau蛋白分子聚集并形成淀粉样沉积物,同时也观察到了Tau蛋白“孔道样”聚集结构.上述结果为探索甲醛诱导Tau蛋白错误折叠形成的产物导致细胞代谢障碍和死亡的机制提供了新的研究思路.  相似文献   

10.
11.
Erythrocytes oxidized or aged in the circulation undergo membrane protein aggregation and anti-band 3 autoantibody binding to the cell surface. When human erythrocytes were mildly oxidized in vitro with 0.1 mM Fe(III) at 37 degrees C for 3 h, the aggregation of nonionic detergent C(12)E(8)-insoluble membrane protein and the binding of anti-band 3 IgG to the cell surface were increased. Incubation of membranes isolated from the oxidized cells increased the amount of protein aggregates by 5-fold after 6 h, while incubation for a further 12 h sharply decreased the amount of aggregates. In the presence of diisopropyl fluorophosphate (DFP), however, the increased amount of aggregates was maintained in the subsequent incubation. Western blot analysis of the aggregates using rabbit anti-band 3 showed that band 3 protein aggregates increased in the initial stage of incubation and decreased upon subsequent incubation, whereas the increased band 3 protein aggregates did not subsequently decrease when membranes were incubated in the presence of DFP. Incubation of the oxidized cells at 37 degrees C for 18 h caused reduction of the membrane protein aggregates and the (125)I-anti-band 3 IgG binding to the cell surface, while incubation in the presence of DFP did not cause these reductions. The results suggest that the oxidation-induced cell membrane protein aggregates were probably removed by 80-kDa serine protease, namely, oxidized protein hydrolase (OPH), in the oxidized cell membranes [Fujino et al. (1998) Biochim. Biophys. Acta 1374, 47-54; (1998) J. Biochem. 124, 1077-1085; (2000) Biochim. Biophys. Acta 1478, 102-112], and as a result the increased anti-band 3 binding to the cell surface was reduced.  相似文献   

12.
The formation of native insulin either from scrambled insulin or from the separated A chain and B chain S-sulphonates by protein disulphide-isomerase was demonstrated with yields of 20-30% as measured by h.p.l.c. analysis, receptor binding and stimulation of lipogenesis. The h.p.l.c. profile of the reaction products shows that, among all the possible isomers containing both chains, the native hormone is by far the predominating product and consequently the most stable under certain conditions.  相似文献   

13.
Protein conformational stability is an important concern in many fields. Here, we describe a strategy for significantly increasing conformational stability by optimizing beta-turn sequence. Proline and glycine residues are statistically preferred at several beta-turn positions, presumably because their unique side-chains contribute favorably to conformational stability in certain beta-turn positions. However, beta-turn sequences often deviate from preferred proline or preferred glycine. Therefore, our strategy involves replacing non-proline and non-glycine beta-turn residues with preferred proline or preferred glycine residues. Here, we develop guidelines for selecting appropriate mutations, and present results for five mutations (S31P, S42G, S48P, T76P, and Q77G) that significantly increase the conformational stability of RNase Sa. The increases in stability ranged from 0.7 kcal/mol to 1.3 kcal/mol. The strategy was successful in overlapping or isolated beta-turns, at buried (up to 50%) or completely exposed sites, and at relatively flexible or inflexible sites. Considering the significant number of beta-turn residues in every globular protein and the frequent deviation of beta-turn sequences from preferred proline and preferred glycine residues, this simple, efficient strategy will be useful for increasing the conformational stability of proteins.  相似文献   

14.
We describe the comparative analysis of protein aggregates by combining blue native electrophoresis and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using a 3-D geometry gel for simultaneous processing of many samples. The first native electrophoresis step, separating the aggregates, is carried out for a series of samples in parallel lanes within a slab gel. This gel is then placed on the top surface of a cylindrical, 3-D geometry gel for the second denaturing electrophoresis step, separating the proteins composing the aggregates. The samples migrate parallel to the vertical axis of the gel cylinder. Data are acquired online by photodetection of laser-induced fluorescence during electrophoresis. For this purpose, the samples are fluorescently labeled within the slab gel after the first separation step. A 3-D geometry gel separates the equivalent of many conventional SDS slab gels represented by vertical layers in the 3-D gel body. In this way, many samples are analyzed in the same gel under identical conditions, improving comparability and resolution and making the process considerably more efficient. This novel technique allowed the identification of several aggregate classes of recombinant proteins expressed in bacteria. We observed that proteins preferentially bind to homolog polypeptides, but also seem to form a trapping mesh co-aggregating with other proteins. The aggregation pattern revealed by this technique supplements data obtained from standard two-dimensional gel electrophoresis analysis. We expect interesting applications, for instance in aggregate monitoring of clinical samples. It should be feasible to quickly gain a diagnostic picture during amyloid-related neurodegenerative disease development or to observe drug effects on protein aggregation.  相似文献   

15.
Tobacco plants have the potential to be used for the production of proteins for pharmaceutical applications. This work describes a novel protein recovery strategy where the protein of interest is "tagged" with a histidine sequence, which forms a complex with cobalt ions and surfactant possessing a chelating functionality, such that the protein is recovered in the foamate of a foam fractionation step. His-gus, a histidine-tagged enzyme, was chosen as a model protein to study the feasibility of this strategy. The His-gus is recovered from spiked prefoamed tobacco extract by foam fractionation in the presence of surfactant and cobalt ions with an enrichment of 1.29 and a recovery of 21.5% in terms of an adjusted activity.  相似文献   

16.
The three-dimensional morphology of native bacterial cellulose is confirmed by scanning electron microscopy. In addition, it is shown by scanning electron microscopy, and transmission electron microscopy with positive staining by phosphotungstic acid ions that aggregates of microfibrils of native cotton cellulose have a similar structure. The results are consistent with previous reports on microfibrils of algal cellulose. These observations exclude a simple spinneret process as a mechanism of formation of the microfibrils of these sources of cellulose.  相似文献   

17.
18.
Surfactant protein A (SP-A) is known to cause bacterial permeabilization. The aim of this work was to gain insight into the mechanism by which SP-A induces permeabilization of rough lipopolysaccharide (Re-LPS) membranes. In the presence of calcium, large interconnected aggregates of fluorescently labeled TR-SP-A were observed on the surface of Re-LPS films by epifluorescence microscopy. Using Re-LPS monolayer relaxation experiments at constant surface pressure, we demonstrated that SP-A induced Re-LPS molecular loss by promoting the formation of three-dimensional lipid-protein aggregates in Re-LPS membranes. This resulted in decreased van der Waals interactions between Re-LPS acyl chains, as determined by differential scanning calorimetry, which rendered the membrane leaky. We also showed that the coexistence of gel and fluid lipid phases within the Re-LPS membrane conferred susceptibility to SP-A-mediated permeabilization. Taken together, our results seem to indicate that the calcium-dependent permeabilization of Re-LPS membranes by SP-A is related to the extraction of LPS molecules from the membrane due to the formation of calcium-mediated protein aggregates that contain LPS.  相似文献   

19.
Pulmonary surfactant isolated by lavage can be separated into large aggregates (LA) and small aggregates (SA). Pulse labeling experiments have shown that the LA subtype is the precursor of the SA subtype. Conversion of LA to SA can be demonstrated in vitro using the technique of surface area cycling. The precise mechanisms of surfactant subtype conversion remain unknown. We have previously reported a decline in surfactant-associated protein B (SP-B) during in vitro subtype conversion of canine surfactant. This led to the hypothesis that SP-B may be degraded by a serine protease 'convertase' during cycling. The current studies used a quantitative slot-blot assay to investigate the fates of SP-A and SP-B during in vitro cycling. These studies confirmed some SP-A is present in SA, but SP-B is confirmed to LA. Conversion leads to an apparent loss of SP-B during cycling. However, SP-B can be recovered from the walls of polypropylene and Teflon tubes by washing with chloroform:methanol. Recovered SP-B migrated on non-reducing tricine gels as a single band with an apparent molecular weight of 17 kDa, corresponding to intact SP-B dimer. Reconstitution studies demonstrated that the recovered SP-B retained its surface active properties as determined on a pulsating bubble surfactometer. We conclude in vitro surface area cycling of canine LA results in the dissociation of SP-B from surfactant lipids resulting in an apparent decline in SP-B levels.  相似文献   

20.
1. Proteoglycan aggregates from bovine nasal cartilage were studied by using electron microscopy of proteoglycan/cytochrome c monolayers. 2. The aggregates contained a variably long central filament of hyaluronic acid with an average length of 1037nm. The proteoglycan monomers attached to the hyaluronic acid appeared as side chain filaments varying in length (averaging 249nm). They were distributed along the central filament at an average distance of about 36nm. 3. Chondroitin sulphate side chains were removed from the proteoglycan monomers of the aggregates by partial chondroitinase digestion. The molecules obtained had the same general appearance as intact aggregates. 4. Proteoglycan aggregates were treated with trypsin and the largest fragment, which contains the hyaluronic acid, link protein and hyaluronic acid-binding region, was recovered and studied with electron microscopy. Filaments that lacked the side chain extensions and had the same length as the central filament in the intact aggregate were observed. 5. Hyaluronic acid isolated after papain digestion of cartilage extracts gave filaments with similar length and size distribution as observed for the central filament both in the intact aggregate and in the trypsin digests. 6. Umbilical-cord hyaluronic acid was also studied and gave electron micrographs similar to those described for hyaluronic acid from cartilage. However, the length of the filament was somewhat shorter. 7. The electron micrographs of both intact and selectively degraded proteoglycans corroborate the current model of cartilage proteoglycan structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号