首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In leaf blades of Zea mays L. plasmodesmata between mesophyll cells are aggregated in numerous thickened portions of the walls. The plasmodesmata are unbranched and all are characterized by the presence of electron-dense structures, called sphincters by us, near both ends of the plasmodesmatal canal. The sphincters surround the desmotubule and occlude the cytoplasmic annulus where they occur. Plasmodesmata between mesophyll and bundle-sheath cells are aggregated in primary pit-fields and are constricted by a wide suberin lamella on the sheath-cell side of the wall. Each plasmodesma contains a sphincter on the mesophyll-cell side of the wall. The outer tangential and radial walls of the sheath cells exhibit a continuous suberin lamella. However, on the inner tangential wall only the sites of plasmodesmatal aggregates are consistently suberized. Apparently the movement of photosynthetic intermediates between mesophyll and sheath cells is restricted largely or entirely to the plasmodesmata (symplastic pathway) and transpirational water movement to the cell walls (apoplastic pathway).Abbreviation ER endoplasmic reticulum  相似文献   

2.
R. F. Evert  W. Eschrich  W. Heyser 《Planta》1978,138(3):279-294
Small and intermediate (longitudinal) vascular bundles of the Zea mays leaf are surrounded by chlorenchymatous bundle sheaths and consist of one or two vessels, variable numbers of vascular parenchyma cells, and two or more sieve tubes some of which are associated with companion cells. Sieve tubes not associated with companion cells have relatively thick walls and commonly are in direct contact with the vessels. The thick-walled sieve tubes have abundant cytoplasmic connections with contiguous vascular parenchyma cells; in contrast, connections between vascular parenchyma cells and thin-walled sieve tubes are rare. Connections are abundant, however, between the thin-walled sieve tubes and their companion cells; the latter have few connections with the vascular parenchyma cells. Plasmolytic studies on leaves of plants taken directly from lighted growth chambers gave osmotic potential values of about-18 bars for the companion cells and thin-walled sieve tubes (the companion cell-sieve tube complexes) and about-11 bars for the vascular parenchyma cells. Judging from the distribution of connections between various cell types of the vascular bundles and from the osmotic potential values of those cell types, it appears that sugar is actively accumulated from the apoplast by the companion cell-sieve tube complex, probably across the plasmalemma of the companion cell. The thick-walled sieve tubes, with their close spatial association with the vessels and possession of plasmalemma tubules, may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream. The transverse veins have chlorenchymatous bundle sheaths and commonly contain a single vessel and sieve tube. Parenchymatic elements may or may not be present. Like the thick-walled sieve tubes of the longitudinal bundles, the sieve tubes of the transverse veins have plasmalemma tubules, indicating that they too may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream.  相似文献   

3.
The activities of several enzymes, including ribulose-1,5-diphosphate (RuDP) carboxylase (EC 4.1.1.39) and phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured as a function of leaf age in Z. mays. Mature leaf tissue had a RuDP-carboxylase activity of 296.7 mol CO2 g-1 fresh weight h-1 and a PEP-carboxylase activity of 660.6 mol CO2 g-1 fresh weight h-1. In young corn leaves the activity of the two enzymes was 11 and 29%, respectively, of the mature leaves. In senescent leaf tissue, RuDP carboxylase activity declined more rapidly than that of any of the other enzymes assayed. On a relative basis the activities of NADP malic enzyme (EC 1.1.1.40), aspartate (EC 2.6.1.1) and alanine aminotransferase (EC 2.6.1.2), and NAD malate dehydrogenase (EC 1.1.1.37) exceeded those of both PEP and RuDP carboxylase in young and senescent leaf tissue. Pulse-chase labeling experiments with mature and senescent leaf tissue show that the predominant C4 acid differs between the two leaf ages. Labeling of alanine in senescent tissue never exceeded 4% of the total 14C remaining during the chase period, while in mature leaf tissue alanine accounted for 20% of the total after 60 s in 12CO2. The activity of RuDP carboxylase during leaf ontogeny in Z. mays parallels the development of the activity of this enzyme in C3 plants.Abbreviations RuDP ribulose-1,5-diphosphate - PEP phosphoenol pyruvate - PGA 3-phosphoglycerate  相似文献   

4.
Spray  Clive  Phinney  Bernard O.  Gaskin  Paul  Gilmour  Sarah J.  MacMillan  Jake 《Planta》1984,160(5):464-468
[13C, 3H]Gibberellin A20 (GA20) has been fed to seedlings of normal (tall) and dwarf-5 and dwarf-1 mutants of maize (Zea mays L.). The metabolites from these feeds were identified by combined gas chromatography-mass spectrometry. [13C, 3H]Gibberellin A20 was metabolized to [13C, 3H]GA29-catabolite and [13C, 3H]GA1 by the normal, and to [13C, 3H]GA29 and [13C, 3H]GA1 by the dwarf-5 mutant. In the dwarf-1 mutant, [13C, 3H]GA20 was metabolized to [13C, 3H]GA29 and [13C, 3H]GA29-catabolite; no evidence was found for the metabolism of [13C, 3H]GA20 to [13C, 3H]GA1. [13C, 3H]Gibberellin A8 was not found in any of the feeds. In all feeds no dilution of 13C in recovered [13C, 3H]GA20 was observed. Also in the dwarf-5 mutant, the [13C]label in the metabolites was apparently undiluted by endogenous [13C]GAs. However, dilution of the [13C]label in metabolites from [13C, 3H]GA20 was observed in normal and dwarf-1 seedlings. The results from the feeding studies provide evidence that the dwarf-1 mutation of maize blocks the conversion of GA20 to GA1.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - RP reverse phase  相似文献   

5.
S. H. Russell  R. F. Evert 《Planta》1985,164(4):448-458
The vascular system of the Zea mays L. leaf consists of longitudinal strands interconnected by transverse bundles. In any given transverse section the longitudinal strands may be divided into three types of bundle according to size and structure: small, intermediate, large. Virtually all of the longitudinal strands intergrade structurally however, from one bundle type to another as they descend the leaf. For example, all of the strands having large-bundle anatomy appear distally as small bundles, which intergrade into intermediates and then large bundles as they descend the leaf. Only the large bundles and the intermediates that arise midway between them extend basipetally into the sheath and stem. Most of the remaining longitudinal strands of the blade do not enter the sheath but fuse with other strands above and in the region of the blade joint. Despite the marked decrease in number of longitudinal bundles at the base of the blade, both the total and mean cross-sectional areas of sieve tubes and tracheary elements increase as the bundles continuing into the sheath increase in size. Linear relationships exist between leaf width and total bundle number, and between cross-sectional area of vascular bundles and both total and mean cross-sectional areas of sieve tubes and tracheary elements.  相似文献   

6.
Microautoradiographs showed that [14C]sucrose taken up in the xylem of small and intermediate (longitudinal) vascular bundles of Zea mays leaf strips was quickly accumulated by vascular parenchyma cells abutting the vessels. The first sieve tubes to exhibit 14C-labeling during the [14C]sucrose experiments were thick-walled sieve tubes contiguous to the more heavily labeled vascular parenchyma cells. (These two cell types typically have numerous plasmodesmatal connections.) With increasing [14C]sucrose feeding periods, greater proportions of thick- and thin-walled sieve tubes became labeled, but few of the labeled thin-walled sieve tubes were associated with labeled companion cells. (Only the thin-walled sieve tubes are associated with companion cells.) When portions of leaf strips were exposed to 14CO2 for 5 min, the vascular parenchyma cells-regardless of their location in relation to the vessels or sieve tubes-were the most consistently labeled cells of small and intermediate bundles, and label (14C-photosynthate) appeared in a greater proportion of thin-walled sieve tubes than thick-walled sieve tubes. After a 5-min chase with 12CO2, the thin-walled sieve tubes were more heavily labeled than any other cell type of the leaf. After a 10-min chase with 12CO2, the thin-walled sieve tubes were even more heavily labeled. The companion cells generally were less heavily labeled than their associated thin-walled sieve tubes. Although all of the thick-walled sieve tubes were labeled in portions of leaf strips fed 14CO2 for 5 min and given a 10-min 12CO2 chase, only five of 72 vascular bundles below the 14CO2-exposed portions contained labeled thick-walled sieve tubes. Moreover, the few labeled thick-walledsieve tubes of the transport region always abutted 14C-labeled vascular parenchyma cells. The results of this study indicate that (1) the vascular parenchyma cells are able to retrieve at least sucrose from the vessels and transfer it to the thick-walled sieve tubes, (2) the thick-walled sieve tubes are not involved in long-distance transport, and (3) the thin-walled sieve tubes are capable themselves of accumulating sucrose and photosynthates from the apoplast, without the companion cells serving as intermediary cells.  相似文献   

7.
Merten Jabben 《Planta》1980,149(1):91-96
The phytochrome system is analyzed in light-grown maize (Zea mays L.) plants, which were prevented from greening by application of the herbicide SAN 9789. The dark kinetics of phytochrome are not different in the first, second or third leaf. It is concluded that in light-grown maize plants phytochrome levels are regulated by Pr formation and Pfr and Pr destruction, rather than by PfrPr dark reversion. Pr undergoes destruction after it has been cycled through Pfr. The consequences of this Pr destruction on the phytochrome system are discussed.Abbreviations SAN 9789 4-chloro-5-(methylamino)-2-(,,-trifluoro-m-tolyl)-3(2H) pyridazinone - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot Pfr+Pr  相似文献   

8.
S. J. Neill  R. Horgan  A. F. Rees 《Planta》1987,171(3):358-364
Seed development was investigated in kernels of developing wild-type and viviparous (vp-1) Zea mays L. Embryos and endosperm of wild-type kernels began to dehydrate at approx. 35 d after pollination (DAP); viviparous embryos did not desiccate but accumulated fresh weight via coleoptile growth in the caryopses. Concentrations of endogenous abscisic acid (ABA) in the embryo were relatively high early in development, being approx. 150 ng·g-1 fresh weight at 20 DAP. The ABA content declined thereafter, falling to approx. 50 ng·g-1 at 30 DAP. Endosperm ABA content was always low, being less than 20 ng·g-1. There were no differences between wild-type and vp-1 tissues. Immature kernels did not germinate when removed from the ear until late in development. The ability to germinate was correlated with decreasing moisture content in the endosperm at the time of removal; premature drying of immature kernels resulted in greatly increased germination following imbibition. Excised embryos germinated precociously when removed from the endosperm as early as 25 DAP. Such germination could be prevented by treatment with 10-5 M ABA or by lowering the solute potential (s) of the medium with 0.3 M mannitol. Treatment of excised embryos with ABA led to internal ABA concentrations comparable to those in embryos in which germination was inhibited in situ. Mannitol treatment did not have this effect, although water-deficit stress of excised embryos resulted in substantial ABA production. Germinated vp-1 embryos were less sensitive to growth inhibition by ABA or mannitol than germinating wild-type embryos. The vp-1 seedlings were not wilty and their transpiration rates were reduced in response to ABA or water shortage.Abbreviations and symbols ABA abscisic acid - DAP days after pollination - FW fresh weight - vp-1 viviparous genotype - s solute potential  相似文献   

9.
The molecular mechanism of light perception through phytochrome is not well understood. This red-light photosensor has been implicated in various physiological processes, including the photoinduction of flowering. A few recent studies have shown that phytochrome initiates signal transduction chains via guanosine triphosphate (GTP)-binding proteins (G-proteins). We show here by different approaches that G-proteins exist in spinach (Spinacia oleracea L. cv. Nobel). Binding of GTP on the plasmalemma has been partially characterized and its possible regulation by red light examined by in-vitro assays. These experiments indicate a clear regulation of GTP binding by red light and also by Mastoparan. At least three G-proteins or protein subunits were found to be associated with the plasmalemma of leaf cells. The use of an antibody raised against an animal Gβ subunit confirmed the presence of heterotrimeric G-proteins. Separation of a crude membrane extract by free-flow electrophoresis also showed that some G-proteins could exist on the tonoplast.  相似文献   

10.
Intact bundle-sheath cells with functional plasmodesmata were isolated from leaves of Zea mays L. cv. Mutin, and the capacity of these cells to synthesize glutamine and glutamate was determined by simulating physiological substrate concentrations in the bathing medium. The results show that glutamine synthetase can operate at full rate in the presence of added 8 mM ATP. At lower concentrations of ATP a higher rate of glutamine synthesis was found in the light than in darkness. Glutamate-synthase activity, on the other hand, was strictly light dependent. It appears that in bundle-sheath cells of maize the nitrate-assimilatory capacities of glutamine synthetase (located mainly in the cytosol) and of glutamate synthase (located in the stroma) are high enough to meet the demands of whole maize leaves.Abbreviations Gln glutamine - Glu glutamate - GOGAT glutamate synthase - GS glutamine synthetase - 2-OG 2-oxoglutarate This work was supported by the Bundesminister für Forschung und Technologie (0319296A). We thank Mr. Bernd Raufeisen for the art work of Fig. 1.  相似文献   

11.
Randy Moore  James D. Smith 《Planta》1985,164(1):126-128
The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g–1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g–1 FW,±standard deviation): w-3, 279±43; vp-5, 237±26; vp-7, 338±61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necesary for positive gravitropism by primary roots of Z. mays.Abbreviation ABA abscisic acid  相似文献   

12.
The apoplastic fluids of field-grown Zea mays and Zea luxurians plants were isolated from surface sterilized stem tissue by centrifugation and spread on agar plates containing a nitrogen-free, defined medium. The predominant bacterium isolated from these plates was characterized further. The ability of this bacterium to fix nitrogen was confirmed by its ability to grow on a semi-solid, nitrogen-free medium and reduce 15N2 to 15NH3 and acetylene to ethylene. Protions of the nifH and 16S rRNA genes from this organism were amplified by PCR and sequenced. The nifH gene, which codes for dinitrogenase reductase, from this organism is closely related to nifH from Klebsiella pneumoniae. Similarly, the 16S rRNA gene sequences and carbon utilization tests grouped it closely with K. pneumoniae. Based an these data, the isolates from Z. mays and Z. luxurians are tentatively classified as Klebsiella spp. (Zea). The ability of this bacterium to contribute to the nitrogen economy of the corn plant is unknown.  相似文献   

13.
D. M. R. Harvey 《Planta》1985,165(2):242-248
Zea mays is a salt-sensitive crop species which in saline (100 mol m-3 NaCl) conditions suffers considerable growth reduction correlated with elevated Na+ and Cl- concentration within the leaves. To increase understanding of the regulation of ion uptake and transport by the roots in saline conditions, ion concentrations within individual root cortical cells were determined by X-ray microanalysis. There was variation in Na+, K+ and Cl- distributions among individual cells, which could not be correlated with their spatial position in the roots. Generally, however, in response to saline growth conditions (100 mol m3 NaCl) Na+ and Cl- were mostly localized in the vacuoles, although their concentrations were also sometimes increased in the cytoplasm and cell walls. The concentration of K+ in the cytoplasm was usually maintained at a level (mean 79 mol m-3) compatible with the biochemical functions ascribed to this ion.Abbreviation (T)AEM (Transmission) analytical electron microscopy  相似文献   

14.
The incorporation of 14C into sucrose and hexose phosphates during steady-state photosynthesis was examined in intact leaves of Zea mays L. plants. The compartmentation of sucrose synthesis between the bundle sheath and mesophyll cells was determined by the rapid fractionation of the mesophyll and comparison of the labelled sucrose in this compartment with that in a complete leaf after homogenisation. From these experiments it was concluded that the majority of sucrose synthesis occurred in the mesophyll cell type (almost 100% when the time-course of sucrose synthesis was extrapolated to the time of 14C-pulsing). The distribution of enzymes involved in sucrose synthesis between the two cell types indicated that sucrose-phosphate synthetase was predominantly located in the mesophyll, as was cytosolic (neutral) fructose-1,6-bisphosphatase activity. Stromal (alkaline) fructose-1,6-bisphosphatase activity was found almost exclusively in the bundle-sheath cells. No starch was found in the mesophyll tissue. These data indicate that in Zea mays starch and sucrose synthesis are spatially, separated with sucrose synthesis occurring in the mesophyll compartment and starch synthesis in the bundle sheath.  相似文献   

15.
Richard C. Leegood 《Planta》1985,164(2):163-171
Sap extracted from attached leaves of two-to three-week-old maize plants witt the aid of a roller device was almost devoid of bundle-sheath contamination as judged by the distribution of mesophyll and bundle-sheath markers. The extraction could be done very rapidly (less than 1 s) and the extract immediately quenched in HClO4 or reserved for enzyme assay. Comparison of the contents of metabolites in intact leaves and in the leaf extract allowed estimation of the distribution of metabolites between the bundle-sheath and the mesophyll compartments. Substantial amounts of metabolites such as malate and amino acids were present in the non-photosynthetic cells of the midrib. In the illuminated leaf, triose phosphate was predominantly located outside the bundle-sheath while the major part of the 3-phosphoglycerate was in the bundle sheath. The results indicate the existence of concentration gradients of triose phosphate and 3-phosphoglycerate in the leaf which are capable of maintaining carbon flow between the mesophyll and bundle-sheath cells during photosynthesis. There was no evidence for the existence of a gradient of pyruvate between the bundle-sheath and the mesophyll cells.  相似文献   

16.
The hydraulic conductivity of the lateral walls of early metaxylem vessels (Lpx in m · s–1 · MPa–1) was measured in young, excised roots of maize using a root pressure probe. Values for this parameter were determined by comparing the root hydraulic conductivities before and after steam-ringing a short zone on each root. Killing of living tissue virtually canceled its hydraulic resistance. There were no suberin lamellae present in the endodermis of the roots used. The value of Lpx ranged between 3 · 10–7 and 35 · 10–7 m · s–1 · MPa–1 and was larger than the hydraulic conductivity of the untreated root (Lpr = 0.7 · 10–7 to 4.0 · 10–7 m · s–1 · MPa–1) by factor of 3 to 13. Assuming that all flow through the vessel walls was through the pit membranes, which occupied 14% of the total wall area, an upper limit of the hydraulic conductivity of this structure could be given(Lppm=21 · 10–7 to 250 · 10–7 m · s–1 · MPa–1). The specific hydraulic conductivity (Lpcw) of the wall material of the pit membranes (again an upper limit) ranged from 0.3 · 10–12 to 3.8 · 10–12 m2 · s–1 · MPa–1 and was lower than estimates given in the literature for plant cell walls. From the data, we conclude that the majority of the radial resistance to water movement in the root is contributed by living tissue. However, although the lateral walls of the vessels do not limit the rate of water flow in the intact system, they constitute 8–31% of the total resistance, a value which should not be ignored in a detailed analysis of water flow through roots.Abbreviatations and Symbols kwr (T 1 2/W ) rate constant (half-time) of water exchange across root (s–1 or s, respectively) - Lpcw specific hydraulic conductivity of wall material (m2 · s–1 · MPa–1) - Lppm hydraulic conductivity of pit membranes (m · s –1 · MPa–1) - Lpr hydraulic conductivity of root (m · s–1 · MPa–1) - Lpx lateralhydraulic conductivity of walls of root xylem (m · s –1 · MPa–1) This research was supported by a grant from the Bilateral Exchange Program funded jointly by the Natural Sciences and Engineering Research Council of Canada and the Deutsche Forschungsgemeinschaft to C.A.P., and by a grant from the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 137, to E.S. The expert technical help of Mr. Burkhard Stumpf and the work of Ms. Martina Murrmann and Ms. Hilde Zimmermann in digitizing chart-recorder strips is gratefully acknowledged.  相似文献   

17.
The aim of this work was to investigate the mechanism of formation of triose phosphates and 3-phosphoglycerate during photosynthetic induction in leaves of Zea mays. Simultaneous measurements of gas exchange, chlorophyll a fluorescence and metabolite contents of maize leaves were made. Leaves illuminated in the absence of CO2 showed a build-up of triose phosphates during the first 2 min of illumination which was comparable to the build-up observed in the presence of CO2. Isolated mesophyll protoplasts, which lack the Calvin cycle, also showed a build-up of triose phosphates upon illumination. Leaves contained amounts of phosphoglycerate mutase and enolase adequate to account for the formation of triose phosphates and 3-phosphoglycerate from intermediates of the C4 cycle and their precursors.  相似文献   

18.
A hydroxyproline-rich glycoprotein (HRGP) component of the maize cell wall was shown to be present in different organs of the plant by extraction of cell wall proteins and detection by Western blotting and immunocytochemistry. Antibodies raised against the protein or against synthetic peptides designed from the protein sequence immunoprecipitated a proline-rich polypeptide which was synthesized in-vitro from poly(A) + RNA extracted from different tissues of the plant and from the complete in-vitro-transcribed mRNA. A very low amount of the protein was found in immature embryos. In particular, the protein could not be detected in the scutellum either by Western blotting or by immunocytochemistry. In agreement with this finding, HRGP mRNA was barely detected in the scutellum, in contrast to its accumulation in the embryo axis. Our results indicate the existence of a unique cell wall structure in embryonic tissues from maize as well as a tissuespecific component of the control of maize HRGP gene expression, distinct to others already described such as cell division.Abbreviations HRGP(s) hydroxyproline-richglycoprotein(s) - DAP days after pollination The present work was supported by grants from Plan Nacional de Investigation Cientifica y Técnica (grant BI088-0242) and European Communities (grant BAP-374). L.R.-A. is the recipient of a fellowship from the Plan Nacional de Formación de Personal Investigador.  相似文献   

19.
Early effects of gibberellic acid (GA3) (1–4 h treatment) on the ion ratios in a dwarf maize mutant (Zea mays L. d 1) showing normal growth after hormone treatment, have been investigated by electron microprobe analysis. GA3 exerts a different effect on the ion ratios in plastids, cytoplasm and vacuoles in short term experiments. The Cl content of chloroplasts and cytoplasm increases without a lag phase after GA3 treatment. The K content of plastids increases after a lag phase of 2 h, whereas in the cytoplasm an increase can be observed immediately after GA3 addition. The hormone has only little influence on the Ca content of the cell compartments investigated. Control experiments with water and the physiologically inactive GA3 methylester confirm the specifity of the short-term actions of GA3 on the ion ratios. The primary action of GA3 at the membrane level is discussed.  相似文献   

20.
The appearance of transverse sections of maize leaves indicates the existence of two airspace systems serving the mesophyll, one connected to the stomata of the upper epidermis and the other to the stomata of the lower surface, with few or no connections between the two. This study tests the hypothesis that the air-space systems of the upper and lower mesophyll are separated by a defined barrier of measurable conductance. A mathematical procedure, based on this hypothesis, is developed for the quantitative separation of the contributions made by the upper and lower halves of the mesophyll to carbon assimilation using gasexchange data. Serial paradermal sections and three-dimensional scanning-electron-microscope images confirmed the hypothesis that there were few connections between the two air-systems. Simultaneous measurements of nitrous-oxide diffusion across the leaf and of transpiration from the two surfaces showed that the internal conductance was about 15% of the maximum observed stomatal conductance. This demonstrates that the poor air-space connections, indicated by microscopy, represent a substantial barrier to gas diffusion. By measuring the CO2 and water-vapour fluxes from each surface independently, the intercellular CO2 concentration (c i) of each internal air-space system was determined and the flux between them calculated. This allowed correction of the apparent CO2 uptake at each surface to derive the true CO2 uptake by the mesophyll cells of the upper and lower halves of the leaf. This approach was used to analyse the contribution of the upper and lower mesophyll to CO2 uptake by the leaf as a whole in response to varying light levels incident on the upper leaf surface. This showed that the upper mesophyll was light-saturated by a photon flux of approx. 1000 mol·m-2·s-1 (i.e. about one-half of full sunlight). The lower mesophyll was not fully saturated by photon fluxes of nearly double full sunlight. At low photon fluxes the c i of the upper mesophyll was significantly less than that of the lower mesophyll, generating a significant upward flux of CO2. At light levels equivalent to full sunlight, and above, c i did not differ significantly between the two air space systems. The physiological importance of the separation of the air-space systems of the upper and lower mesophyll to gas exchange is discussed.Abbreviations and symbols A net leaf CO2 uptake rate - A upper app. and A lower app. net rates of CO2 uptake across the upper and lower surfaces - A upper and A lower derived net rates of CO2 uptake by the upper and lower mesophyll - A upward net flux of CO2 from the lower to upper mesophyll - c a, c a, upper and c a, lower the CO2 concentrations in the air around the leaf above the upper surface and below the lower surface - c N2O the concentration of N2O in the air around the leaf - c i, c i, upper and c i, lower the mesophyll intercellular CO2 concentration of the whole leaf, the upper mesophyll and the lower mesophyll - g i leaf internal conductance to CO2 - g s, g s, lower and g s, upper the stomatal conductance of the whole leaf, the lower surface and the upper surface - g the total conductance across the leaf - Q the photosynthetically active photon flux density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号