首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In etiolated leaves of Phaseolus vulgaris L. cv. Prelude only low levels of NADH-nitrate oxidoreductase (E.C. 1.6.6.2; NAR) and reduced benzyl viologen-nitrite oxidoreductase (E.C. 1.6.6.4; NIR) could be detected, even in the presence of nitrate. When nitrate was available illumination of leaves of 10-day-old etiolated seedlings resulted in an induction of both NAR and NIR. In the absence of nitrate no induction of the enzymes took place, although greening of the leaves was normal. Chloramphenicol (CAP) and cycloheximide (CHI), applied at the beginning of the light period, inhibited the induction of both NAR and NIR. Administered after 24 h of illumination CHI still inhibited the induction of both enzymes whereas CAP was no longer inhibitory. The induction of NAR and NIR by nitrate in green leaves in light was inhibited by CHI but not by CAP. From these results it seems likely that both the enzymes NAR and NIR are synthesized on cytoplasmic ribosomes. Before the enzymes can be manufactured in the cytoplasm some chloroplast development is required.Abbreviations CAP chloramphenicol - CHI cycloheximide - G-6-P(-dh) glucose-6-phosphate (dehydrogenase) - NAR nitrate reductase - NIR nitrite reductase  相似文献   

2.
Summary In laaves of Phaseolus vulgaris L. cv. Prelude, the light-induced increase in activity of NADH-nitrate oxidoreductase (E.C.1.6.6.2; NAR) and reduced benzylviologennitrite oxidoreductase (E.C.1.6.6.4; NIR) starts at a certain stage in the development of the chloroplasts. In leaves with completely developed chloroplasts, a higher increase in activity of NAR and NIR is observed, after induction by the addition of nitrate, in the light than in the dark. DCMU inhibits the increase in activity of the two enzymes in the light. Both in the light in the presence of DCMU, and in the dark the increase in activity reaches a higher level by the addition of sucrose.Induction of NAR, but not of NIR, can be observed in excised etiolated leaves. No induction is found in leaves of intact etiolated seedlings.The relation between photosynthetic reactions and the increase in activity of NAR and NIR is discussed. It is suggested that NADH, indirectly formed by photosynthesis, protects NAR and affects in this way the balance between synthesis and breakdown of the enzyme. The increase in activity of NIR is possibly influenced by the presence of reduced ferredoxin.Abbreviations CAP D-threo-chloramphenicol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - NAR nitrate reductase - NIR nitrite reductase  相似文献   

3.
Synthesis and degradation of barley nitrate reductase   总被引:21,自引:13,他引:8       下载免费PDF全文
Nitrate and light are known to modulate barley (Hordeum vulgare L.) nitrate reductase activity. The objective of this investigation was to determine whether barley nitrate reductase is regulated by enzyme synthesis and degradation or by an activation-inactivation mechanism. Barley seedling nitrate reductase protein (cross-reacting material) was determined by rocket immunoelectrophoresis and a qualitative immunochemical technique (western blot) during the induction and decay of nitrate reductase activity. Nitrate reductase cross-reacting material was not detected in root or shoot extracts from seedlings grown without nitrate. Low levels of nitrate reductase activity and cross-reacting material were observed in leaf extracts from plants grown on nitrate in the dark. Upon nitrate induction or transfer of nitrate-grown etiolated plants to the light, increases in nitrate reductase activity were positively correlated with increases in immunological cross-reactivity. Root and shoot nitrate reductase activity and cross-reacting material decreased when nitrate-induced seedlings were transferred to a nitrate-free nutrient solution or from light to darkness. These results indicate that barley nitrate reductase levels are regulated by de novo synthesis and protein degradation.  相似文献   

4.
《Phytochemistry》1986,25(7):1563-1565
The induction of nitrate reductase in excised cotyledons of radish seedlings was inhibited by the polyamines, spermidine and spennine, in light and dark, but putrescine had no effect. Spermine had no effect on the uptake of nitrate or the stability of the enzyme, but inhibited the synthesis of the enzyme.  相似文献   

5.
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

6.
Light and dark assimilation of nitrate in plants   总被引:6,自引:3,他引:3  
Abstract. Heterotrophic assimilation of nitrate in roots and leaves in darkness is closely linked with the oxidative pentose phosphate pathway. The supply of glucose-6-phosphate to roots and chloroplasts in leaves in darkness is essential for assimilation of nitrite into amino acids. When green leaves are exposed to light, the key enzyme, glucoses-phosphate dehydrogenase, is inhibited by reduction with thioredoxin. Hence the dark nitrate assimilatory pathway is inhibited under photoautotrophic conditions and replaced by regulatory reactions functioning in light. On account of direct photo-synthetic reduction of nitrite in chloroplasts and availability of excess NADH for nitrate reduclase, the rate of nitrate assimilation is extremely rapid in light. Under dark anaerobic conditions also nitrate is equally rapidly reduced to nitrite on account of abolition of competition for NADH between nitrate reductase and mitochondrial oxidation.  相似文献   

7.
Banding patterns of nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS) from leaves of diploid barley (Hordeum vulgare), tetraploid wheat (Triticum durum), hexaploid wheat (Triticum aestivum), and tetraploid wild oats (Avena barbata) were compared following starch gel electrophoresis. Two NR isozymes, which appeared to be under different regulatory control, were observed in each of the three species. The activity of the more slowly migrating nitrate reductase isozyme (NR1) was induced by NO3- in green seedlings and cycloheximide inhibited induction. However, the activity of the faster NR isozyme (NR2) was unaffected by addition of KNO3, and it was not affected by treatments of cycloheximide or chloramphenicol. Only a single isozyme of nitrite reductase was detected in surveys of three tetraploid and 18 hexaploid wheat, and 48 barley accessions; however, three isozymes associated with different ecotypes were detected in the wild oats. Inheritance patterns showed that two of the wild oat isozymes were governed by a single Mendelian locus with two codominant alleles; however, no variation was detected for the third isozyme. Treatment of excised barely and wild oat seedlings with cycloheximide and chloramphenicol showed that induction of NiR activity was greatly inhibited by cycloheximide, but only slightly by chloramphenicol. Only a single GS isozyme was detected in extracts of green leaves of wheat, barley, and wild oat seedlings. No electrophoretic variation was observed within or among any of these three species. Thus, this enzyme appears to be the most structurally conserved of the three enzymes.  相似文献   

8.
C. B. Johnson 《Planta》1976,129(2):127-131
Summary Nitrate reductase in the cotyledons of etiolated seedlings of Sinapis alba L. responds rapidly to the addition of nitrate. The response is inhibited by cycloheximide at low concentrations. The enzyme is also under phytochrome control. Five minutes of red light irradiation leads instantaneously to a 45% increase in enzyme activity. Increases in activity, linear with respect to time and with no lag phases are promoted by continuous far-red or blue irradiation. These increases are insensitive to cycloheximide. Thus, light and nitrate act through different mechanisms in controlling nitrate reductase activity and phytochrome does not act via controlling the rate of synthesis of the enzyme.Abbreviation cot pr pair of cotyledons  相似文献   

9.
Nitrite reductase (ferredoxin:nitrite oxidoreductase, EC 1.6.6.1) carries out the six-electron reduction of nitrite to ammonium ions in the chloroplasts/plastids of higher plants. The complete or partial nucleotide sequences of a number of nitrite reductase apoprotein genes or cDNAs have been determined. Deduced amino acid sequence comparisons have identified conserved regions, one of which probably is involved in binding the sirohaem/4Fe4S centre and another in binding the electron donor, reduced ferredoxin. The nitrite reductase apoprotein is encoded by the nuclear DNA and is synthesised as a precursor carrying an N-terminal extension, the transit peptide, which acts to target the protein to, and within, the chloroplast/plastid. In those plants examined the number of nitrite reductase apoprotein genes per haploid genome ranges from one (barley, spinach) to four ( Nicotiana tabacum ). Mutants defective in the nitrite reductase apoprotein gene have been isolated in barley. During plastidogenesis in etiolated plants, synthesis of nitrite reductase is regulated by nitrate, light (phytochrome), and an uncharacterised 'plastidic factor' produced by functional chloroplasts. In leaves of green, white-light-grown plants up-regulation of nitrite reductase synthesis is achieved via nitrate and light and down-regulation by a nitrogenous end-product of nitrate assimilation, perhaps glutamine. A role for phytochrome has not been demonstrated in green, light-grown plants. Light regulation of nitrite reductase genes is related more closely to that of photosynthetic genes than to the nitrate reductase gene. In roots of green, white-light-grown plants nitrate alone is able to bring about synthesis of nitrite reductase, suggesting that the root may possess a mechanism that compensates for the light requirement seen in the leaf.  相似文献   

10.
A protein with molecular mass of 67 kilodaltons is immunoprecipitated from in vitro translated products obtained from rabbit reticulocyte lysate primed with polyadenylated RNA from nitrate treated illuminated pea seedlings. This protein resembles the native nitrite reductase because of its competitive elimination when immunoprecipitation of in vitro translated products was carried out in the presence of cold unlabeled nitrite reductase or in vivo labeled pea leaf extract. This protein is of slightly higher molecular weight than that of the native nitrite reductase. Proteinaceous extracts from chloroplasts convert the in vitro product to the same molecular weight as the native peptide. The conversion appears to occur in two steps. Polyadenylated RNA from nitrate deficient plants or from nitrate-treated plants transferred to darkness do not support the synthesis of nitrite reductase. It is concluded that nitrate and light modulate the synthesis of the enzyme nitrite reductase by regulating the availability of mRNA for the enzyme.  相似文献   

11.
cDNA clones were selected from a corn (Zea mays L.) leaf lambda gt11 expression library using polyclonal antibodies for corn leaf NADH:nitrate reductase. One clone, Zmnrl, had a 2.1 kilobase insert, which hybridized to a 3.2 kilobase mRNA. The deduced amino acid sequence of Zmnrl was nearly identical to peptide sequences of corn leaf NADH:nitrate reductase. Another clone, Zm6, had an insert of 1.4 kilobase, which hybridized to a 1.4 kilobase mRNA, and its sequence coded for chloroplastic NAD(P)+:glyceraldehyde-3-phosphate dehydrogenase based on comparisons to sequences of this enzyme from tobacco and corn. When nitrate was supplied to N-starved, etiolated corn plants, nitrate reductase, and glyceraldehyde-3-phosphate dehydrogenase mRNA levels in leaves increased in parallel. When green leaves were treated with nitrate, only nitrate reductase mRNA levels were increased. Nitrate is a specific inducer of nitrate reductase in green leaves, but appears to have a more general effect in etiolated leaves. In the dark, nitrate induced nitrate reductase expression in both etiolated and green leaves, indicating light and functional chloroplast were not required for enzyme expression.  相似文献   

12.
An investigation was made to determine the effects of univalentcations as activators on the formation of nitrate reductaseand nitrite reductase in rice seedlings. K+ functioned moreeffectively as a univalent cation activator than did other univalentcations examined. Substitution of Rb+ for K+ resulted in stimulationof nitrate reductase formation at about half the rate obtainedwith K+. There was no effect on nitrite reductase formation.Na+ could be partially substituted for K+ in the formation ofboth enzymes. NH4+ slightly inhibited formation of the enzymes.In the absence of univalent cations, enzyme formation proceededat a slower rate during the initial 15-hr period, but thereafterproceeded at a higher rate. This delayed formation was not observedin the presence of K+. Results from inhibitor experiments suggestthat K+ stimulates the formation of nitrate reductase and nitritereductase. In conclusion, when nitrate nitrogen is supplied to rice plantsutilization of the nitrogen may be accelerated by increasedformation of enzymes involved in nitrate assimilation in thepresence of K+. (Received February 21, 1969; )  相似文献   

13.
Nitrate reductase activity, assayed either in vivo or in vitro was considerably higher in bean (Phaseolus vulgaris L.) leaves from 7-day-old light grown seedlings than those from dark grown, both in the absence as well as presence of nitrate. Cytochrome c reductase activity was however similar in both regimes, while peroxidase was lower in light than in dark. The light stimulated increase in nitrate reductase activity in leaf segments from dark grown seedlings was inhibited by cycloheximide, DNP, chloramphenicol, and sodium tungstate and was unaffected by lincomycin and DCMU. Under similar conditions, the increase in total chlorophyll was inhibited completely by cycloheximide and DNP, partially by chloramphenicol and lincomycin, and was unaffected by tungstate and DCMU. A supply of 1~5 mm reduced glutathione increased enzyme activity in the dark and also to some extent in light. The substrate induction of enzyme activity started after a lag of one hr in light or dark and continued for either 5 hr in the dark or 8 hr in light. Two proteinaceous inhibitors (Factors I and II) of nitrate reductase were isolated by ammonium sulfate precipitation and Sephadex gel filtration. The amount of Factor I was higher in the dark than in light. The amount and activity of Factor II was however, almost equal in light and dark. The inhibition of enzyme activity by these inhibitors increased with their concentration. It is proposed that light increases nitrate reductase activity by decreasing the amount of a nitrate reductase inhibitor.  相似文献   

14.
Regulation by the active form of phytochrome (PFR) and the effect of Ca2+ was examined with nitrate reductase (NR) in etiolated cucumber ( Cucumis sativus cv. Beilpuig). Nitrate reductase activity (NRA) was studied in excised cotyledons of cucumber seedlings grown in distilled water and in darkness for seven days at 24 ± 0.5°C. All experiments were performed in the dark and a dim green safelight was used during analyses. In etiolated cucumber cotyledons NRA was induced by nitrate and a brief irradiation (15 min) with red light (R) resulted in 62% increase in NRA. This effect was nullified when R was followed immediately by a brief (5 min) far-red light (FR). NRA also showed a semidian (12 h) rhythmicity. Both PFR, and nitrate effects were age dependent. Calcium seemed to be involved since the phytochrome effect was only observed when calcium was supplied in the external solution. The effect of R on NRA depended on the period of calcium nitrate incubation. An external supply of calcium ionophore mimicked the effect of R and, if supplied to R-irradiated cotyledons, produced a higher NR level than that caused by R alone. This suggested that intracellular free calcium was involved.  相似文献   

15.
The effect of tungsten on the development of endogenous and nitrate-induced NADH- and FMNH2-linked nitrate reductase activities in primary leaves of 10-day-old soybean (Glycine max [L.] Merr.) seedlings was studied. The seedlings were grown with or without exogenous nitrate. High levels of endogenous nitrate reductase activities developed in leaves of seedlings grown without nitrate. However, no endogenous nitrite reductase activity was detected in such seedlings. The FMNH2-linked nitrate reductase activity was about 40% of NADH-linked activity. Tungsten had little or no effect on the development of endogenous NADH- and FMNH2-linked nitrate reductase activities, respectively. By contrast, in nitrate-grown seedlings, tungsten only inhibited the nitrate-induced portion of NADH-linked nitrate reductase activity, whereas the FMNH2-linked activity was inhibited completely. Tungsten had no effect on the development of nitrate-induced nitrite reductase activity. The complete inhibition of FMNH2-linked nitrate reductase activity by tungsten in nitrate-grown plants was apparently an artifact caused by the reduction of nitrite by nitrite reductase in the assay system. The results suggest that in soybean leaves either the endogenous nitrate reductase does not require molybdenum or the molybdenum present in the seed is preferentially utilized by the enzyme complex as compared to nitrate-induced nitrate reductase.  相似文献   

16.
The role of phytochrome in the induction of nitrate reductase of etiolated field peas (Pisum arvense L.) was examined. Terminal bud nitrate concentration increased in darkness, and the increase correlated with induction of nitrate reductase following brief exposure of intact plants to red, blue, far red, and white lights. Brief light exposure of intact plants stimulated nitrate uptake and induction of nitrate reductase by terminal buds subsequently excised and incubated on nitrate solution in darkness; exposure of excised buds in contact with nitrate led to less uptake but more induction. Nitrate and nitrate reductase activity both declined during incubation with water, irrespective of light treatment. Nitrate enrichment of intact terminal buds and uptake into excised buds and increases in nitrate reductase activity were all red/far red reversible. Dimethyl sulfoxide (1%, v/v) and sugars (sucrose 0.5%, glucose 1, w/v), although stimulating nitrate uptake into excised tissue in darkness, failed to enhance nitrate reductase activity over dark controls. Phytochrome may regulate nitrate reductase via both nitrate movement and a general mechanism such as enhancement of protein synthesis.  相似文献   

17.
Biosynthesis of Ferredoxin-Nitrite Reductase in Rice Seedlings   总被引:1,自引:0,他引:1  
Changes in ferredoxin-nitrite reductase [EC 1.7.7.1 [EC] ] in etiolatedrice seedlings were followed during induction by nitrate andlight. Etiolated seedlings showed maximal induction of the enzymeactivity during greening with nitrate, while the enzyme activityin etiolated seedlings receiving nitrate in darkness increasedhalf as much as that in nitrate-treated greening plants. Theincrease in nitrite reductase activity during induction coincidedwith an increase in the content of proteins immunoprecipitatedby antibodies raised against spinach nitrite reductase. Lighthad no effect on the induction of the extractable nitrite reductasein the absence of nitrate. Poly(A)+-RNA extracted from nitrate-treatedgreening shoots directed the synthesis in a rabbit reticulocyte-lysateof polypeptides immunoprecipitated by spinach nitrite reductaseantibodies. One major polypeptide larger than the native enzymewas found among the translation products, suggesting that nitritereductases in greening rice shoots are synthesized as an precursorform. Analysis of two-dimensional electrophoretograms indicatedthe existence of isoforms of nitrite reductase in rice seedlingswhich had been immunoprecipitated with spinach nitrite reductaseantibodies. 1To whom all correspondence should be sent. (Received May 15, 1987; Accepted September 7, 1987)  相似文献   

18.
Abstract Effect of ammonium on in vivo activity of nitrate reductase in roots, shoots and leaves of maize (Zea mays L.) seedlings was studied in relation to light/dark conditions and EDTA supply. Supply of 5 mM (NH4)2SO4 increased the steady state level of enzyme only in leaves and in light, while it had no effect in roots and shoots and in the dark. The substrate induction of enzyme was also little affected by 1 to 10 mM (NH4)2SO4 in roots and shoots. In the leaves the activity in the dark was either inhibited (minus EDTA) or stimulated (plus EDTA) by 5 to 10 mM (NH4)2SO4. The activity was stimulated in the light also in the presence of EDTA at higher concentrations of ammonium. When different concentrations of ammonium were supplied without any exogenous nitrate in the light, the enzyme activity increased at low concentration and was either inhibited or unaffected at higher concentrations depending upon the tissue used. Supply of EDTA with ammonium modified its effect to some extent. It is suggested that the effect of ammonium on nitrate reductase activity depends upon the tissue used and the effective concentration of the ammonium.  相似文献   

19.
The inclusion of cysteine and Na-EDTA in the extracting buffer lowered the activity of sulphite reductase extracted from wheat leaves while nitrite and hydroxylamine reductases were not so affected. Maximum activity for the three enzymes was achieved with reduced methyl viologen as the electron donor. The three enzyme activities were found in the chloroplasts. Nitrite reductase was detected in the leaves of the seedlings only when grown with nitrate and exposed to light. Sulphite and hydroxylamine reductases were not, however, influenced by either of these treatments. These results suggest that nitrite reductase is a distinct enzyme and is not associated with sulphite reductase and hydroxylamine reductase in wheat leaves.  相似文献   

20.
Functioning of nitrate reductase and nitrite reductase was measured in intact cotyledons from radish seedlings (Raphanus sativus L.) grown in the dark in a nitrate medium. Reduction of nitrate to nitrate did proceed during the whole period of 45 h, whereas the reduction of nitrite in the intact cotyledons dropped abruptly between 20 and 23 h after exposing the roots to nitrate. The activity of the enzymes glucose-6-P dehydrogenase (G6PDH) and 6-P-gluconate dehydrogenase (6PGDH), measured in cotyledon extracts, showed a sharp decline simultaneously with the drop in nitrite reductase activity of the intact cotyledons. It was concluded that the amount of NADPH generated by the enzymes G6PDH and 6PGDH is not sufficient to allow continuous functioning of nitrite reductase after 20 h in cotyledons of seedlings grown in the dark. Therefore, the results from our experiments point to the functioning of nitrite reductase as the rate limiting step in the reduction pathway of nitrate in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号