首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early-maturing cultivars of soybean [Glycine max (L.) Merr.] native to the shores of the Sea of Okhotsk (Sakhalin and Kuril Islands) and eastern Hokkaido (northern Japan) have a strong tendency to produce cleistogamous flowers throughout their blooming period. A previous study revealed that cleistogamy is controlled by a minimum of two genes with epistatic interaction, one of which is associated with a maturity gene responsible for insensitivity to incandescent long daylength (ILD). This study was conducted to determine the genetic basis of cleistogamy in more detail by QTL mapping. F(2) to F(4) progenies derived from a cross between a cleistogamous cv. Karafuto-1 and a chasmogamous cv. Toyosuzu were used. A molecular linkage map spanning 2,180 cM comprising 500 markers was constructed using 89 F(2) plants. The markers were distributed in 25 linkage groups. An interval mapping method to analyze categorical traits identified four QTLs for cleistogamy, cl1, cl2, cl3 and cl4, in molecular linkage groups (MLGs) C2, D1a, I and L, respectively. Alleles derived from Karafuto-1 had additive effects to increase probability of cleistogamy at cl3 and cl4, whereas the alleles had additive effects to decrease the probablity at cl1 and cl2. Progeny test confirmed the effects of cl3, which had the highest LOD score (5.20). Composite interval mapping revealed four QTLs for flowering date, fd5-fd8. Judging from relative location with markers and association with ILD responses, fd7 and fd8 may correspond to maturity genes E4 and E3, respectively. cl3 and cl4 were located at similar positions as fd7 and fd8, suggesting that the two maturity genes may control cleistogamy by either pleiotropy or close linkage.  相似文献   

2.
Days to flowering and maturity are controlled by genes E1-E7 and J in soybean. Previous studies revealed that E1-E5 and E7 influence tolerances to low-temperature-induced seed coat browning in different directions at various intensities. The E4 locus is useful for the development of early maturing cultivars with chilling tolerance because the recessive allele conditions both the early-maturing habit and chilling tolerance. This study was conducted to obtain a fine map of E4 by amplified fragment length polymorphism (AFLP) analysis using a F(8:9) family segregating for E4 that was developed from a cross between photoperiod-insensitive Japanese landraces, Sakamotowase (E4) and Miharudaizu (e4). AFLP analysis using a total of 4096 primer pairs detected 20 polymorphic markers between near-isogenic lines for E4. Linkage mapping incorporated 16 AFLP markers into a previously constructed genetic map around E4 in linkage group I. Eight AFLP markers were localized to unfilled areas between E4 and the closest markers identified previously. Two AFLP markers flanking E4, e48m41-8 and e18m38-8, were mapped at positions 0.6 and 5.4 cM apart from E4, respectively. They were dominant and in cis arrangement with the recessive allele (e4) conditioning the photoperiod insensitivity and chilling tolerance. These markers can be used in developing more precise markers for fine mapping and marker-assisted selection and in isolating the underlying gene via genome walking approaches.  相似文献   

3.
4.
Photoperiodic flowering is one of the most important factors affecting regional adaptation and yield in soybean (Glycine max). Plant adaptation to long-day conditions at higher latitudes requires early flowering and a reduction or loss of photoperiod sensitivity; adaptation to short-day conditions at lower latitudes involves delayed flowering, which prolongs vegetative growth for maximum yield potential. Due to the influence of numerous major loci and quantitative trait loci (QTLs), soybean has broad adaptability across latitudes. Forward genetic approaches have uncovered the molecular basis for several of these major maturity genes and QTLs. Moreover, the molecular characterization of orthologs of Arabidopsis thaliana flowering genes has enriched our understanding of the photoperiodic flowering pathway in soybean. Building on early insights into the importance of the photoreceptor phytochrome A, several circadian clock components have been integrated into the genetic network controlling flowering in soybean: E1, a repressor of FLOWERING LOCUS T orthologs, plays a central role in this network. Here, we provide an overview of recent progress in elucidating photoperiodic flowering in soybean, how it contributes to our fundamental understanding of flowering time control, and how this information could be used for molecular design and breeding of high-yielding soybean cultivars.  相似文献   

5.
Drought stress has long been a major constraint in maintaining yield stability of soybean (Glycine max (L.) Merr.) in rainfed ecosystems. The identification of consistent quantitative trait loci (QTL) involving seed yield per plant (YP) and drought susceptibility index (DSI) in a population across different environments would therefore be important in molecular marker-assisted breeding of soybean cultivars suitable for rainfed regions. The YP of a recombinant line population of 184 F2:7:11 lines from a cross of Kefengl and Nannong1138-2 was studied under water-stressed (WS) and well-watered (WW) conditions in field (F) and greenhouse (G) trials, and DSI for yield was calculated in two trials. Nineteen QTLs associated with YP-WS and YP-WW, and 10 QTLs associated with DSI, were identi- fied. Comparison of these QTL locations with previous findings showed that the majority of these regions control one or more traits re- lated to yield and other agronomic traits. One QTL on molecular linkage group (MLG) K for YP-F, and two QTLs on MLG C2 for YP-G, remained constant across different water regimes. The regions on MLG C2 for YP-WW-F and MLG H for YP-WS-F had a pleiotropic effect on DSI-F, and MLG A1 for YP-WS-G had a pleiotropic effect on DSI-G. The identification of consistent QTLs for YP and DSI across different environments will significantly improve the efficiency of selecting for drought tolerance in soybean.  相似文献   

6.
The chilling and heat requirements and flowering time were studied, for 2 years, in an almond progeny from the cross between the late-flowering French selection “R1000” and the early-flowering Spanish “Desmayo Largueta”. These three temperature-dependent traits showed quantitative inheritance, although for chilling requirements and flowering time a major gene could be involved, modified by other minor genes. The results indicate that flowering time is mainly a consequence of the chilling requirements; heat requirements having a smaller effect. In agreement with the genetic findings, a significant Quantitative Trait Loci (QTL) for chilling requirements was found in G4 together with other minor QTLs in G1, G3, and G7. For heat requirements, two QTLs in G2 and G7 were identified. The results also show the high influence of temperature in the expression of the three traits and their QTL analyses. In addition, QTL analysis for flowering time allowed the identification of one significant QTL in linkage group 4 (G4) that explained most of the phenotypic variation together with other minor QTLs located in G1, G6, and G7.  相似文献   

7.
8.
A genetic linkage map covering a large region of the genome with informative markers is essential for plant genome analysis, including identification of quantitative trait loci (QTLs), map-based cloning, and construction of a physical map. We constructed a soybean genetic linkage map using 190 F2 plants derived from a single cross between the soybean varieties Misuzudaizu and Moshidou Gong 503, based on restriction-fragment-length polymorphisms (RFLPs) and simple-sequence-repeat polymorphisms (SSRPs). This linkage map has 503 markers, including 189 RFLP markers derived from expressed sequence tag (EST) clones, and consists of 20 major linkage groups that may correspond to the 20 pairs of soybean chromosomes, covering 2908.7 cM of the soybean genome in the Kosambi function. Using this linkage map, we identified 4 QTLs--FT1, FT2, FT3, and FT4--for flowering time, the QTLs for the 5 largest principal components determining leaflet shape, 6 QTLs for single leaflet area, and 18 regions of segregation distortion. All 503 analyzed markers identified were located on the map, and almost all phenotypic variations in flowering time were explained by the detected QTLs. These results indicate that this map covers a large region of the soybean genome.  相似文献   

9.
The present study investigates the genetic determinism of flowering and maturity dates, two traits highly affected by global climate change. Flowering and maturity dates were evaluated on five progenies from three Prunus species, peach, apricot and sweet cherry, during 3–8 years. Quantitative trait locus (QTL) detection was performed separately for each year and also by integrating data from all years together. High heritability estimates were obtained for flowering and maturity dates. Several QTLs for flowering and maturity dates were highly stable, detected each year of evaluation, suggesting that they were not affected by climatic variations. For flowering date, major QTLs were detected on linkage groups (LG) 4 for apricot and sweet cherry and on LG6 for peach. QTLs were identified on LG2, LG3, LG4 and LG7 for the three species. For maturity date, a major QTL was detected on LG4 in the three species. Using the peach genome sequence data, candidate genes underlying the major QTLs on LG4 and LG6 were investigated and key genes were identified. Our results provide a basis for the identification of genes involved in flowering and maturity dates that could be used to develop cultivar ideotypes adapted to future climatic conditions.  相似文献   

10.
Divergence of flowering genes in soybean   总被引:2,自引:0,他引:2  
Soybean genome sequences were blasted with Arabidopsis thaliana regulatory genes involved in photoperiod-dependent flowering. This approach enabled the identification of 118 genes involved in the flowering pathway. Two genome sequences of cultivated (Williams 82) and wild (IT182932) soybeans were employed to survey functional DNA variations in the flowering-related homologs. Forty genes exhibiting nonsynonymous substitutions between G. max and G. soja were catalogued. In addition, 22 genes were found to co-localize with QTLs for six traits including flowering time, first flower, pod maturity, beginning of pod, reproductive period, and seed filling period. Among the genes overlapping the QTL regions, two LHY/CCA1 genes, GI and SFR6 contained amino acid changes. The recently duplicated sequence regions of the soybean genome were used as additional criteria for the speculation of the putative function of the homologs. Two duplicated regions showed redundancy of both flowering-related genes and QTLs. ID 12398025, which contains the homeologous regions between chr 7 and chr 16, was redundant for the LHY/CCA1 and SPA1 homologs and the QTLs. Retaining of the CRY1 gene and the pod maturity QTLs were observed in the duplicated region of ID 23546507 on chr 4 and chr 6. Functional DNA variation of the LHY/CCA1 gene (Glyma07g05410) was present in a counterpart of the duplicated region on chr 7, while the gene (Glyma16g01980) present in the other portion of the duplicated region on chr 16 did not show a functional sequence change. The gene list catalogued in this study provides primary insight for understanding the regulation of flowering time and maturity in soybean.  相似文献   

11.
J05 soybean was previously identified to carry 2 independent genes, Rsv1 and Rsv3, for "soybean mosaic virus" (SMV) resistance by inheritance and allelism studies. The objective of this research was to confirm the 2 genes in J05 using molecular markers so that a marker-assisted selection can be implemented. The segregation of F(2) plants from J05 x Essex exhibited a good fit to a 3:1 ratio when inoculated with SMV G1. Three simple sequence repeat (SSR) markers near Rsv1, Satt114, Satt510, and Sat_154, amplified polymorphic DNA fragments between J05 and Essex and were closely linked to the gene on soybean molecular linkage group (MLG) F, thus verifying the presence of Rsv1 in J05 for resistance to SMV G1. The presence of Rsv3 in J05 was confirmed by 2 closely linked SSR markers on MLG B2, Satt726 and Sat_424, in F(2:3) lines that were derived from the SMV G1-susceptible F(2) plants and segregated in a 1:2:1 ratio for reaction to SMV G7. Two closely linked markers for Rsv4, Satt296 and Satt542, segregated independently of SMV resistance, indicating the absence of Rsv4 in J05. These SSR markers for Rsv1 and Rsv3 can serve as a useful molecular tool for selection and pyramiding of genes in J05 for SMV resistance.  相似文献   

12.
In soybean (Glycine max [L.] Merr.), 3 qualitative trait loci (Pb, Y9, and Y17) are located on classical linkage group 14, which corresponds to molecular linkage group (MLG) E. The Pb locus conditions sharp/blunt pubescence tip; the y9 and y17 loci condition green/chlorotic foliage. The gene order is not known. Our objective was to determine the gene order on soybean MLG E of the Pb, Y9, and Y17 loci using previously mapped simple sequence repeat (SSR) markers. Allelism tests between y9 and y17 gave normal green foliage F(1) plants, indicating nonallelism. Our F(2) data from the allelism test could not distinguish between a 1:1 or a 9:7 ratio. The F(2:3) family segregation indicated a very close genetic linkage between the y9 and the y17 loci. Two molecular mapping populations were developed. Population-1 segregated for Pb and y9, and population-2 segregated for Pb and y17. The gene order on soybean MLG E, using SSR markers, was Pb, Y9, and Y17.  相似文献   

13.
Soybean cultivars are extremely diverse in time to flowering and maturation as a result of various photoperiod sensitivities. The underlying molecular genetic mechanism is not fully clear, however, four maturity loci E1, E2, E3 and E4 have been molecularly identified. In this report, cultivars were selected with various photoperiod sensitivities from different ecological zones, which covered almost all maturity groups (MG) from MG 000 to MG VIII and MG X adapted from latitude N 18° to N 53°. They were planted in the field under natural daylength condition (ND) in Beijing, China or in pots under different photoperiod treatments. Maturity-related traits were then investigated. The four E maturity loci were genotyped at the molecular level. Our results suggested that these four E genes have different impacts on maturity and their allelic variations and combinations determine the diversification of soybean maturity and adaptation to different latitudes. The genetic mechanisms underlying photoperiod sensitivity and adaptation in wild soybean seemed unique from those in cultivated soybean. The allelic combinations and functional molecular markers for the four E loci will significantly assist molecular breeding towards high productivity.  相似文献   

14.
Although four maturity genes, E1 to E4, in soybean have been successfully cloned, their functional mechanisms and the regulatory network of photoperiodic flowering remain to be elucidated. In this study, we investigated how the diurnal expression pattern of the E1 gene is related to photoperiodic length; and to what extent allelic variation in the B3-like domain of the E1 gene is associated with flowering time phenotype. The bimodal expression of the E1 gene peaked first at around 2 hours after dawn in long-day condition. The basal expression level of E1 was enhanced by the long light phase, and decreased by duration of dark. We identified a 5bp (3 SNP and 2-bp deletion) mutation, referred to an e1-b3a, which occurs in the middle of B3 domain of the E1 gene in the early flowering cultivar Yanhuang 3. Subcellular localization analysis showed that the putative truncated e1-b3a protein was predominately distributed in nuclei, indicating the distribution pattern of e1-b3a was similar to that of E1, but not to that of e1-as. Furthermore, genetic analysis demonstrated allelic variations at the E1 locus significantly underlay flowering time in three F2 populations. Taken together, we can conclude the legume specific E1 gene confers some special features in photoperiodic control of flowering in soybean. Further characterization of the E1 gene will extend our understanding of the soybean flowering pathway in soybean.  相似文献   

15.
Natural variation in flowering time may play a role in the adaptation of plants to various environments, and understanding the genetic basis of flowering and maturity would facilitate the development of early maturing cultivars. Molecular markers for the E2 and E3 loci, which control the time of flowering and maturity in soybean (Glycine max), were developed in this study. Single nucleotide-amplified polymorphism (SNAP) markers were developed from the nonsense mutation in E2 (GmGIa), which is a circadian clock-controlled gene. The E2- and e2-specific SNAP markers were validated using six E2 isolines. The soybean E3 gene is a photoreceptor phytochrome A (GmPhyA3) gene, and a co-dominant marker was designed based on sequence deletions within the E3 allele. A multiplex PCR assay using three primers for the E3 gene allowed allelic discrimination based on the sizes of PCR products. Furthermore, this E3 marker successfully detected two alleles in a single reaction when two types of DNA were pooled. These markers determined the genotypes of our mapping population previously reported to detect flowering quantitative trait loci close to the E2 and E3 loci, confirming that the mutations are responsible for the early flowering phenotype. The use of SNAP markers for E2 and a co-dominant marker for E3 is a simple, fast, and reproducible method, requiring only PCR and agarose gel electrophoresis. The molecular resources developed in this study could accelerate marker-assisted selection and cultivar development for short-season areas in a soybean breeding program.  相似文献   

16.
Reproductive period (RP) is an important trait of soybean [Glycine max (L.) Merr.] It is closely related to yield, quality and tolerances to environmental stresses. To investigate the inheritance and photoperiod response of RP in soybean, the F(1), F(2), and F(2:3) populations derived from nine crosses were developed. The inheritance of RP was analyzed through the joint segregation analysis. It was shown that the RP was controlled by one major gene plus polygenes. 181 recombinant inbred lines (RILs) generated from the cross of Xuyong Hongdou?×?Baohexuan 3 were further used for QTL mapping of RP under normal conditions across 3 environments, using 127 SSR markers. Four QTLs, designated qRP-c-1, qRP-g-1, qRP-m-1 and qRP-m-2, were mapped on C1, G and M linkage groups, respectively. The QTL qRP-c-1 on the linkage group C1 showed stable effect across environments and explained 25.6, 27.5 and 21.4% of the phenotypic variance in Nanjing 2002, Beijing 2003 and Beijing 2004, respectively. Under photoperiod-controlled conditions, qRP-c-1, and two different QTLs designated qRP-l-1 and qRP-o-1, respectively, were mapped on the linkage groups L and O. qRP-o-1 was detected under SD condition and can explained 10.70% of the phenotypic variance. qRP-c-1 and qRP-l-1 were detected under LD condition and for photoperiod sensitivity. The two major-effect QTLs can explain 19.03 and 19.00% of the phenotypic variance, respectively, under LD condition and 16.25 and 14.12%, respectively, for photoperiod sensitivity. Comparative mapping suggested that the two major-effect QTLs, qRP-c-1 and qRP-l-1, might associate with E8 or GmCRY1a and the maturity gene E3 or GmPhyA3, respectively. These results could facilitate our understanding of the inheritance of RP and provide information on marker-assisted breeding for high yield and wide adaptation in soybean.  相似文献   

17.
18.
Soybean (Glycine max L. Merr.) plant introduction (PI) 438489B is a newly found germplasm source that has resistance to multiple soybean cyst nematode (Heterodera glycines Ichinohe, SCN) races. We studied the inheritance of resistance to SCN races 1, 2, 3, 5 and 14 in PI 438489B using F2 and F2:3 families, which were generated by crossing to the susceptible cultivar ’Hamilton.’ The objectives of this study were to investigate the inheritance for resistance to SCN races in PI 438489B, to find molecular markers associated with resistances, and to study the allelic relationships among resistance loci for different SCN races. The results showed that the responses to SCN races were approximately normally distributed with large environmental effects, and were also highly correlated, which implied that genes giving resistance to different races were similar. The narrow-sense heritabilities of resistance to all five SCN races ranged from 0.55 to 0.88. Fifty one restriction fragment length polymorphism (RFLP) markers and 64 simple sequence repeat (SSR) markers were found to be polymorphic in the F2 population. Quantitative trait loci (QTLs) associated with resistance to SCN races were anchored on soybean linkage groups (LGs) A1, A2, B1, B2, C1, C2, D1a, E and G. These QTLs explained 47.3%, 45.8%, 51.5%, 34.5% and 37.2% of the total phenotypic variances, respectively, for each race we investigated. Some QTLs for different races encompassed the same region of flanking markers; therefore, QTLs for multiple races may be linked or pleiotropic effects may be involved. Some loci provided resistance in a race-specific manner. Resistance to SCN race 14 had a different pattern compared to other races. Our results indicated that resistance to race 14 did not include loci on LGs A2 and G. These flanking markers associated with QTLs could be used to select for resistance to multiple SCN races in soybean breeding programs. Received: 25 March 2000 / Accepted: 4 August 2000  相似文献   

19.
Soybean near isogenic lines (NILs), contrasting for maturity and photoperiod sensitivity loci, were genotyped with approximately 430 mapped simple sequence repeats (SSRs), also known as microsatellite markers. By analysis of allele distributions across the NILs, it was possible to confirm the map location of the Dt1 indeterminate growth locus, to refine the SSR mapping of the T tawny pubescence locus, to map E1 and E3 maturity loci with molecular markers, and to map the E4 and E7 maturity loci for the first time. Molecular markers flanking these loci are now available for marker-assisted breeding for these traits. Analysis of map locations identified a putative homologous relationship among four chromosomal regions; one in the middle of linkage group (LG) C2 carrying E1 and E7, one on LG I carrying E4, one at the top of LG C2, at which there is a reproductive period quantitative trait locus (QTL), and the fourth on LG B1. Other evidence suggests that homology also exists between the E1 + E7 region on LG C2 and a region on LG L linked to a pod maturity QTL. Homology relationships predict possible locations in the soybean genome of additional maturity loci, as well as which maturity loci may share a common evolutionary origin and similar mechanism(s) of action.  相似文献   

20.

Background and Aims

The timing of flowering has a direct impact on successful seed production in plants. Flowering of soybean (Glycine max) is controlled by several E loci, and previous studies identified the genes responsible for the flowering loci E1, E2, E3 and E4. However, natural variation in these genes has not been fully elucidated. The aims of this study were the identification of new alleles, establishment of allele diagnoses, examination of allelic combinations for adaptability, and analysis of the integrated effect of these loci on flowering.

Methods

The sequences of these genes and their flanking regions were determined for 39 accessions by primer walking. Systematic discrimination among alleles was performed using DNA markers. Genotypes at the E1E4 loci were determined for 63 accessions covering several ecological types using DNA markers and sequencing, and flowering times of these accessions at three sowing times were recorded.

Key Results

A new allele with an insertion of a long interspersed nuclear element (LINE) at the promoter of the E1 locus (e1-re) was identified. Insertion and deletion of 36 bases in the eighth intron (E2-in and E2-dl) were observed at the E2 locus. Systematic discrimination among the alleles at the E1E3 loci was achieved using PCR-based markers. Allelic combinations at the E1E4 loci were found to be associated with ecological types, and about 62–66 % of variation of flowering time could be attributed to these loci.

Conclusions

The study advances understanding of the combined roles of the E1E4 loci in flowering and geographic adaptation, and suggests the existence of unidentified genes for flowering in soybean,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号