首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Inversion of corn coleoptile sections resulted in a 10–20% inhibition of basipetal transport of 3-indoleacetic acid (IAA) and a more pronounced inhibition (20–50%) of the transport of 1-naphthaleneacetic acid (NAA).The effect of inversion on basipetal NAA transport was compared in wild-type corn and in the amylomaize mutant which contains smaller and slower sedimenting amyloplasts: the gravity induced inhibition was higher in the wild type coleoptiles (27% versus 9%).In wild type the inhibitory effect on basipetal NAA transport appeared within less than 30 min after inversion; then the effect remained relatively constant over at least 2 hr of transport. When the sections were returned to the upright position the transport rate increased, reaching the level of upright controls within 30 min.An effect of gravity on lateral transport of NAA was also demonstrated and shown to be expressed within 10 min after placing the tissue horizontally.When basipetal transport was tested in the direction of gravity and/or centrifugal acceleration, auxin movement incrased with increasing acceleration. Transport against centrifugal acceleration (10 x g) was less than transport of control sections (inverted at 1 x g).The results agree with the hypothesis that starch statoliths act by a pressure mechanism on the membrane transport system of auxin.  相似文献   

2.
Summary Auxin transport was studied in coleoptile sections that were stimulated geotropically. The early time course of auxin-transport asymmetry was measured. An initial phase in which more IAA was delivered into the receptor for the upper half was found after 5 min of horizontal exposure. After about 15 min this was followed by the expected known asymmetry in which more auxin flows in the lower side of the coleoptile. Upon return of the coleoptile to a vertical position, this asymmetry disappeared within 30 min.Earlier correlations of geosensitivity of the auxin transport system with sedimentation of amyloplasts in comparisons of wild type corn and an amylomaize mutant were confirmed and extended. It was also shown that, in contrast to the geotropic effect, phototropically induced lateral auxin asymmetry was not significantly different in wild type and amylomaize. Eleven other single-gene endosperm starch mutants of corn were compared to their corresponding normals. In all pairs, if a difference in geosensitivity of lateral auxin transport was present, it was correlated with a parallel difference in amyloplast sedimentation: e.g., sugary 1 (67) had an amyloplast asymmetry index of 0.32 and a 13% gravity effect on auxin transport; the paired wild-type had both a greater amyloplast asymmetry (0.61) and a greater gravity effect on transport (23%).Correlations between gravity effects on auxin transport and amyloplasts were also shown in comparisons of apical and basal sections of corn, oat and Sorghum coleoptiles.Further results, confirming the increased effect of centrifugal acceleration greater than 1xg on lateral auxin transport and on curvature, are in agreement with the hypothesis that the pressure exerted by amyloplasts, acting as statoliths, locally stimulates the auxin transport system in the individual cells.with participation by Charles steele and Vicky fan  相似文献   

3.
Inner mesophyll cells from coleoptiles of Zea mays L. cv. Merit were fixed after varying periods of gravistimulation. A statistically significant amount (17–21%) of amyloplast sedimentation occurred in these cells after 30 s of gravistimulation. The presentation time is approx. 40 s or less. The accumulation of amyloplasts near the new lower wall shows a linear relationship to the logarithm of the gravistimulation time (r=0.92 or higher). The intercept of this line with the baseline value of amyloplasts in vertical coleoptiles indicates that the number of amyloplasts on the new lower wall begins increasing 11–15 s after the onset of gravistimulation. Direct observations of living cells confirm that many amyloplasts sediment within less than 15–30 s. These rapid kinetics are consistent with the classical statolith hypothesis of graviperception involving the sedimentation of amyloplasts to the vicinity of the new lower wall.  相似文献   

4.
Abstract: Gravity-induced events such as amyloplast sedimentation and lateral auxin transport were probed with cytoskeletal drugs in coleoptiles of rice ( Oryza sativa L.). Amyloplast sedimentation was retarded by taxol. Lateral transport of auxin (3H-indoleacetic acid) was strongly inhibited by EPC (ethyl N-phenylcarbamate), but only partially inhibited by taxol. 1 mM EPC reduced gravitropism while phototropism was not affected. The findings suggest that microtubules may transduce pressure or proximity of amyloplasts to the auxin exporter in the plasmalemma.  相似文献   

5.
Volker Hild  Rainer Hertel 《Planta》1972,108(3):245-258
Summary Wild-type corn coleoptiles showed an initial downward bending upon transfer from the vertical to the horizontal position. Strong upward curvature started only 15–30 min after the begin of horizontal exposure.Little, if any at all, initial downward geotropic bending was found with amylomaize coleoptiles at 1 X g. With stronger stimuli (10 or 20 X g) the amylomaize mutant reacted initially strongly in the wrong direction, i.e. opposite to the later response.When wild-type coleoptiles had been symmetrically prestimulated for 60 min with alternating 2-min horizontal exposures from opposite sides, no initial downward bending occurred if the plane of horizontal exposure was maintained from pretreatment to the continuous horizontal stimulation of the test. If, however, the coleoptiles were rotated 90° around their long axis between pretreatment and test, the initial downward bending reaction developed as in the non-prestimulated controls. Thus changes in reactivity remained localized to the site of stimulation.Following the same pretreatments used for the curvature measurements, lateral 3H-IAA transport was measured in coleoptile segments for 10 or 12.5 min. The auxin distribution found was strikingly parallel to the bending for all pretreatments.The dependence of reaction pattern on the duration of prestimulation in the same plane was tested. The function indicates a half life of 10–20 min for the change in sensitivity. The findings are discussed in view of a model of overstimulation and adaptation.  相似文献   

6.
Shaw  Stanley  Gardner  Gary  Wilkins  Malcolm B. 《Planta》1973,115(2):97-111
Summary Movement of IAA was studied in excised coleoptile apices and whole seedlings of Zea mays L. and Avena sativa L. during geotropic stimulation. A micropipette technique permitted the application of [5-3H]IAA at predetermined points on the coleoptiles with minimal tissue damage.When [5-3H]IAA was applied to the upper side of a horizontal excised Zea coleoptile, about 60% of the recoverable radioactivity had moved into the lower half after 2 h. In contrast, when application was made to the lower side of a horizontal excised coleoptile, only 4% of the radioactivity migrated to the upper half. There was, thus, a net downward movement of 56%. Similar patterns of distribution were found for radioactivity in both the tissue and the basal receiver blocks. In horizontal shoot tissues of intact Zea seedlings a net downward movement of about 30% of the recoverable radioactivity occurred after 1 h of geotropic stimulation. Comparable experiments with Avena indicated a net downward movement of 6–12% in excised apices of coleoptiles and in the intact shoot. In both Zea and Avena chromatographic analyses of tissue and receiver blocks indicated that the movement of radioactivity reflected that of IAA.In Zea coleoptiles, the lateral migration of radioactivity after 2 h was 3 to 4 times greater in the apical tissues than in the basal tissues. A significant net downward movement of radioactivity was detected after 10 min of geotropic stimulation in the extreme apex of Zea coleoptiles but not in the more basal regions.These experiments show that downward lateral transport of IAA occurs in intact shoots of Zea and Avena seedlings upon geotropic stimulation. Lateral transport of IAA had previously been demonstrated only in sub-apical segments of Zea coleoptiles.  相似文献   

7.
V. Hild 《Planta》1977,133(3):309-314
The early geotropic downward bending of corn (Zea mays L.) coleoptiles was found to be influenced by red and blue light. The coleoptiles were illuminated from above and kept in the dark for defined intervals; afterwards they were positioned horizontally and their curvature was monitored for 40 min. After illumination with red light and a 120 min interval and early upward bending instead of an early downward bending was found. This effect was nullified by a far-red illumination administered immediately after exposure to red light. These results indicate that the phytochrome system influences the geotropic reaction. After illumination with blue light and a 30 min interval little downward bending was found. This result corresponds well with the findings of earlier authors who measured the late geotropic reaction, on the basis of the hypothesis that the strength of the early downward bending is a measure of the geotropic sensitivity. The dose-effect curve of the blue light influence on geotropic sensitivity, measured by early downward bending, is very similar to the dose-effect curve of the phototropic curvature of corn coleoptiles. This fact together with the earlier finding of similar adaptation times of about 30 min suggests the existence of some common transducers in the reaction chain of phototropism and geotropism.

Abkürzungen HR Hellrot - DR Dunkelrot - D Dunkel - WT Wartezeit - DK Dunkelkontrolle  相似文献   

8.
Saether N  Iversen TH 《Planta》1991,184(4):491-497
The mutant TC 7 of Arabidopsis thaliana (L.) Heynh. has been reported to be starch-free and still exhibit root gravitropism (T. Caspar and B. G. Pickard 1989, Planta 177, 185–197). This is not consistent with the hypothesis that plastid starch has a statolith function in gravity perception. In the present study, initial light microscopy using the same mutant showed apparently starch-free statocytes. However, ultrastructural examination detected residues of amyloplast starch grains in addition to the starch-depleted amyloplasts. Applying a point-counting morphometric method, the starch grains in the individual amyloplasts in the mutant were generally found to occupy more than 20% and in a few cases up to 60% of the amyloplast area. In the wild type (WT) the starch occupied on average 98 % of the amyloplast area and appeared as densely packed grains. The amyloplasts occupied 13.9% of the area of the statocyte in the mutant and 23.3% of the statocyte area in the WT. Sedimentation of starch-depleted amyloplasts in the mutant was not detected after 40 min of inversion while in the WT the amyloplasts sedimented at a speed of 6 m · h-1. The gravitropic reactivity and the curvature pattern were also examined in the WT and the mutant. The time-courses of root curvature in the WT and the mutant showed that when cultivated under standard conditions for 60 h in darkness, the curvatures were 83° and 44°, respectively, after 25 h of continuous stimulation in the horizontal position. The WT roots curved significantly more rapidly and with a more normal gravitropic pattern than those of the mutant. These results are discussed in relation to the results previously obtained with the mutant and with respect to the starch-statolith hypothesis.Abbreviation WT wild type This work was supported by grants from Norwegian Research Council for Science and the Humanities (NAVF) which we gratefully acknowledge. We would also like to thank Dr. Timothy Caspar, Michigan State University, East Lansing, USA, for providing us with the seeds of TC 75.  相似文献   

9.
Lateral movement of auxin in phototropism   总被引:2,自引:1,他引:1       下载免费PDF全文
Lateral movement of indoleacetic acid-1-14C in corn coleoptiles was measured as radioactivity moving laterally following unilateral application of the auxin. The data suggest that there is an endogenous lateral movement of auxin, and that phototropic stimulation of the coleoptile depresses lateral movement towards the light and enhances lateral movement away from the light. The lateral movement was found to be principally as indoleacetic acid. In experiments using sunflower hypocotyl sections, evidence is also presented to support the suggestion that lateral redistribution of auxin may be effected by a deflection of auxin around a barrier to basipetal transport.  相似文献   

10.
Young coleoptiles of wheat (Triticum durum var. Henry), depleted of amyloplast starch by incubation at 30°C with gibberellin plus kinetin, retained their geotropic responsiveness. Depleted coleoptiles curved upward more slowly than controls, but this was commensurate with their slower growth. The ratio of curvature to growth was about 50° per mm of elongation in both cases. Newly excised coleoptiles, though containing much more starch than incubated controls, curved only about 25° per mm. The tissue treated in gibberellin plus kinetin appeared to contain no starch when examined (a) freshly squashed, (b) as fixed material sectioned thin and stained by the PAS procedure, and (c) as electron micrographs. Shrunken, starch-free amyloplasts could be identified in certain regions, but these did not show evidence of asymmetric distribution under the influence of gravity. The possibilities that other organelles function as statoliths are considered, and it is concluded not only that georeception is independent of starch grains, but further that it may not be due to statoliths at all in an ordinary sense.  相似文献   

11.
Kutschera U  Siebert C  Masuda Y  Sievers A 《Planta》1991,183(1):112-119
Caryopses of rice (Oryza sativa L. cv. Sasanishiki) were germinated in air or under water. In submerged seedlings a twofold increase in coleoptile growth rate and an inhibition of root growth was observed. The amount of starch in the amyloplasts of submerged coleoptiles was substantially reduced compared to the air-grown control plants and plastids had a proplastidic character. During the rapid elongation of coleoptiles under water, the osmotic concentration of the press sap remained constant, whereas in air-grown coleoptiles a decrease was measured. Determination of curvature of gravistimulated air-grown and submerged shoots was carried out by placing the coleoptiles horizontally in air of 98% relative humidity. Air-grown coleoptiles reached a vertical orientation within 5 h after onset of gravistimulation. In coleoptiles germinated under water the first signs of consistent negative gravitropic bending occurred after 4–5 h and curvature was complete after 24 h. During the first 5 h of gravistimulation the water-grown coleoptiles grew at an average rate of 0.39 mm·h–1, whereas in air-grown coleoptiles a rate of 0.27 mm·h–1 was measured. Concomitant with the delayed onset of gravitropic bending of the water-grown coleoptiles, a change in plastid ultrastructure and an increase in starch content was observed. We conclude that the gravitropic responsiveness of the rice coleoptile depends on the presence of starch-filled amyloplasts.We wish to thank H.-J. Ensikat for technical assistance with the scanning electron microscopy. Supported by the Bundesminister für Forschung und Technologie and the Deutsche Forschungsgemeinschaft.  相似文献   

12.
水稻无侧根突变体的根向重力性异常   总被引:4,自引:0,他引:4  
用化学诱变剂 (NaN3 )处理粳稻品种大力 (O ryzasativaL .cv .Oochikara) ,得到具有 2 ,4 D抗性、无侧根和根向重力性异常的突变体RM 10 9。对原品种为父本和突变体为母本的杂交后代F1、F2 根向重力性的遗传分离进行了研究。结果表明 :突变体的根向重力性异常 ,其性状是单显性基因控制且不受光照和黑暗培养的影响。通过对根冠组织切片观察发现 :突变体根冠中含淀粉体的细胞数量比大力少 ,根冠细胞中淀粉体的直径为原品种的 5 0 %且集中排列于细胞内的一角 ,其排列沉积方向与重力方向相同。推测 :突变体的根向重力性异常与淀粉体直径变小有关  相似文献   

13.
The development of the geoelectric effect has been followedin Zea coleoptiles with a flowing-solution electrode system,and its dependence upon auxin concentration gradients and aerobicmetabolism assessed. A symmetrical source of IAA can effectively replace the coleoptiletip in allowing the geo-electric potential to occur. The diffusatefrom coleoptile tips, when applied asymmetrically to the apexof a vertical decapitated coleoptile, generates a potentialdifference across the coleoptile indistinguishable from thatinduced by the asymmetrical application of IAA. Asymmetricalapplication of IAA to vertical Avena and Zea coleoptiles andHelianthus hypocotyls induces closely similar responses. Neither the geoelectric effect nor a geotropic response developswhen intact Zea coleoptiles are placed horizontally after beingdeprived of oxygen, but they both occur when an aerobic atmosphereis restored. The lateral potential difference induced by theasymmetrical application of IAA to the apex of a vertical coleoptiledoes not occur under anoxic conditions. With a static-drop electrode system and a decapitated Zea coleoptile,a potential difference develops immediately after reorientationof the coleoptile into the horizontal position, and attainsa maximum value after about 10 min. This potential differencecan be further increased by the asymmetrical application ofIAA to the lower half of the apical cut surface of the coleoptile. Our data support the view that both the geoelectric potentialand the geotropic response are due to the IAA concentrationgradient which arises from the lateral transport of this substancefrom the upper to the lower half of the horizontal shoot. Theyalso bear out our previous conclusions that the ‘geoelectricpotential’ observed with static-drop electrodes and anintact shoot, is the resultant of two processes. The first isa physical phenomenon arising in the electrodes, or betweenthe electrodes and the plant tissue, and the second arises inthe living tissues of the shoot as the result of gravity-inducedchanges in auxin distribution.  相似文献   

14.
M. Jacobs  R. Hertel 《Planta》1978,142(1):1-10
An auxin binding sive, with characteristics different from the previously described auxin binding sites I and II in maize coleoptiles, is reported in homogenates of zucchini (Cucurbita pepo L. cv. Black Beauty) hypocotyls. Evidence from differential centrifugation and sucrose and metrizamide density gradients indicates that the site is localized on the plasma membrane. The site has a KD of 1–2×10–6 M for indole acetic acid and has a pH optimum of 5.0. Binding specificity measured with several auxins, weak auxins, and anti-auxins generally parallels the activities of the same compounds as inhibitors of auxin transport. 1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid (2,3,5-TIBA), both auxin transport inhibitors in vivo, increase specific auxin binding to this site. 3,4,5-TIBA, which can partially reverse 2,3,5-TIBA's transport inhibition when the two substances are added together in vivo, partially reverses 2,3,5-TIBA's increase in specific auxin binding to the plasma membrane site when added with 2,3,5-TIBA in vitro. Preliminary investigations indicate that a similar plasma membrane site exists in maize (Zea mays L.) coleoptiles. It is suggested that different conformations of this site may function during active auxin transport.Abbreviations IAA indole-3-acetic acid - NPA 1-N-naphthylphthalamie acid - 2,3,5-TIBA 2,3,5-triiodobenzoic acid - 3,4,5-TIBA 3,4,5-triiodobenzoic acid - 1-NAA 1-naphthaleneacetic acid - 2-NAA 2-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - DTE dithioerythritol - MOPS N-morpholino-3-propansulfonic acid - CCO cytochrome c oxidase - CCR NADH: cytochrome c reductase - glu I glucan synthetase I - ER endoplasmic reticulum  相似文献   

15.
The auxin concentration in roots of Pisum sativum ageotropum was examined by three indirect methods:
  • 1) Supply of auxin before geotropic stimulation;
  • 2) Lateral placing of the root tip;
  • 3) Inhibiting the auxin transport in half of the root.
All the results indicated supraoptimal auxin concentration. When decapitated ageotropum roots were supplied with 1.5 mm long tips from normal Pisum roots their geotropic reactivity was almost restored. The geoelectric potential of stems of Pisum sativum and its mutant ageotropum was measured. In ageotropum stems the geoelectric potential was less and the geotropic reaction appeared later than in the normal stems.  相似文献   

16.
The effects of the morphactin 2-ehloro-9-hydroxyfluorene-9-carboxylicacid methyl ester [CFM] on growth, geotropic curvature and transportand metabolism of indol-3yl-acetic acid [IAA-5-3H] in the coleoptilesof Zea mays and A vena saliva have been investigated. A strongcorrelation has been found to exist between the inhibition ofthe geotropic response and the inhibition of auxin transport.CFM supplied at concentrations sufficient to abolish auxin transporthas been shown to promote the elongation of Zea, but not ofAvena, coleoptile segments. CFM does not change the patternof metabolism of IAA in Zea coleoptile segments. In these segmentsIAA is metabolized when its concentration is high, but the radioactivitytransported basipetally, or laterally in geotropically stimulatedcoleoptiles, is virtually confined to the IAA molecule. Radioactivityexported into the basal receiver blocks is wholly confined toIAA. It is concluded that CFM inhibits the geotropic responsein coleoptiles by suppression of the longitudinal and lateralauxin transport mechanisms. The growth-promoting propertiesof this substance cannot be linked with its effects on eitherauxin metabolism or transport.  相似文献   

17.
Plasmodesmata, Tropisms, and Auxin Transport   总被引:4,自引:0,他引:4  
Attempts were made to disrupt the plasmodesmata between oatcoleoptile cells (Avena saliva L. cv. Victory) by severe plasmolysis.Coleoptiles, allowed to regain turgor after plasmolysis, wereable to execute geotropic and phototropic curvatures and segmentswould grow in response to applied auxin. In coleoptiles similarlytreated, studies with [14C]IAA have shown that longitudinal,basipetal transport of auxin still takes place and, as in controls,IAA is preferentially redistributed laterally within coleoptilesorientated horizontally. Physical continuity of the symplast of oat coleoptile cellsmay not always be disrupted by severe plasmolysis. Nevertheless,functional continuity appears to be interrupted. Despite this,all the processes involved in the execution of tropistic curvaturesremain intact, including transport of hormones. Plasmodesmatalcontinuity between oat coleoptile cells appears not to be anecessary requirement for auxin transport.  相似文献   

18.
Briggs , Winslow R. (Stanford U., Stanford, Calif.) Red light, auxin relationships, and the phototropic responses of corn and oat coleoptiles. Amer. Jour. Bot. 50(2): 196–207. Illus. 1963.— Red light decreases the phototropic sensitivity of corn (Zea mays Burpee ‘Golden Cross Bantam’) and oat (Avena saliva ‘Victory’) coleoptiles. The decrease is reflected by a shift of the curve ploting log dosage vs. response to higher dosages, as described in the literature. In the absence of red light treatment, 1,000 meter-candle-seconds (mcs) white light induces first negative curvature in oats and almost no curvature in corn, which appears to lack the mechanism for first negative curvature. Immediately following a 2-hr red light treatment, the same white light dosage induces almost maximum first positive curvature both in corn and in oat coleoptiles. The increase in curvature obtained reflects the decreased phototropic sensitivity of both plants shown by the dosage-response curve shift. After red treatment, the effect of red light remains maximal for an hour, decaying to the level of non-red-treated plants within another 2 hr. Red light suppresses auxin production by corn coleoptiles. The effect decays after the end of red treatment. Both changes follow time courses parallel to those for the phototropic sensitivity changes. The 1,000 mcs light dosage induces lateral transport of auxin both in red-treated and untreated corn coleoptiles, despite the lack of curvature of the latter. Red light does not induce a circadian rhythm for the phototropic sensitivity changes in oats, is not effective if administered after phototropic induction, and its effect is probably mediated by phytochrome. The hypothesis, not original with this paper, that red light induces an increase in the amount of pigment mediating second positive curvature most closely accounts for the results obtained. Pertinent literature is discussed.  相似文献   

19.
Orientation of wheat seedling organs in relation to gravity   总被引:6,自引:6,他引:0       下载免费PDF全文
Lyon CJ  Yokoyama K 《Plant physiology》1966,41(6):1065-1073
Seedlings of wheat (Triticum aestivum L.) were grown in special holders that permitted the coleoptile and early roots to develop in moist air. The orientation of the organs of seedlings erect to gravity was compared with that of organs produced on a horizontal clinostat. Orientation was described by the angular position of each organ tip with reference to the axis of the embryo. Comparative tests were also made with barley, rye, and oat seedlings.

The coleoptile of all species developed curvatures in 3 dimensions when geotropic responses were eliminated. The primary root was not precise in its positive geotropism. Seedlings grew on clinostats with much greater variations in the lateral orientation of the central root and with a tendency for it to curve away from the endosperm to a greater degree than in erect seedlings.

The symmetry of root system in wheat was found to depend on a specific mechanism. Under the influence of gravity the earliest lateral roots were oriented in a plane at characteristic angles of about 57.5° with the ideal primary root. The corresponding angles for lateral roots growing on clinostats were greater by about 47.5° as a result of epinasty not previously reported in roots. This force also appeared to be active in the seminal roots of barley and rye but not of oats.

The curvatures in coleoptiles grown without the directional effects of gravity correspond to the results of growth imbalance in Coleus stems in the absence of lateral transport of their auxin by gravity. Root epinasty appears to be based on auxin imbalance. Curvatures in the primary root are also interpreted as results of asymmetrical distribution of growth hormone.

  相似文献   

20.
The geotropic reaction in Avena coleoptiles is studied as a function of the stimulation time. The direction of the stimulation with respect to the vascular bundles must be defined when studying geotropic responses. It is found that the threshold time to evoke geotropic response is less than half a minute, i.e., at least ten times lower than the presentation time usually reported in the literature. An extrapolation procedure can be used to give a so-called extrapolated presentation time tb, which is intimately related to the logarithmic part of the geotropic response curve and has a physical meaning in the reciprocity rule. The problem of the duration of the true threshold time for stimulation with 1 g is discussed. An experiment indicates that it is not necessary for mass particles (“statoliths”) to settle on the lateral cell wall in order to start the geotropic reaction chain. The slope of the logarithmic part of the geotropic response curve is independent of the transverse force applied to the coleoptiles. Support is given to the view that the slope is determined by the number of sedimenting mass particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号