首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effect of dilution rate and feed solids concentration on the bacterial leaching of a pyrite/arsenopyrite ore concentrate was studied. A mathematical model was developed for the process based on the steady-state data collected over the range of dilution rates (20 to 110 h) and feed solids concentrations (6 to 18% w/v) studied. A modified Monod model with inhibition by arsenic was used to model bacterial ferrous ion oxidation rates. The model assumes that (i) pyrite and arsenopyrite leaching occurs solely by the action of ferric iron produced from the bacterial oxidation of ferrous iron and (ii) bacterial growth rates are proportional to ferrous ion oxidation rate. The equilibrium among the various ionic species present in the leach solution that are likely to have a significant effect on the bioleach process were included in the model. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
Abstract: Two years of BIOX pilot plant data have been examined for steady state conditions and then correlated using logistic kinetics. It was found that the logistic equation not only predicted the performance of individual stages but also the degree of biooxidation across the entire cascade of bioreactors. It was found that the rate constant was 1.3 day-1 in the first three stages and 0.3 day-1 in the fourth stage. The maximum removal constant was 0.90 in stage 1 and 0.99 in the remaining stages. Plant retention time ranged from 4 to 12 days with corresponding sulphide oxidation varying from 82 to 98% respectively, and primary stage removal rates varying from 8.9 to 4.4 kg m-3 day-l, respectively. In addition, batch biooxidation data were obtained. The biooxidation rate was found to be about half that for the continuous bioreactors. This is in agreement with the findings of several other workers. The specific rates of bioxidation of pyrite and arsenopyrite were very similar for the bulk concentrate at about 0.15 day-1. However, it was significant that the biooxidation of arsenopyrite in the mixed mineral preceded that of pyrite, suggesting a sequential mechanism. Gold liberation was found to be linearly related to arsenopyrite biooxidation but oxidation of pyrite appears to be preferential in the gold-rich regions.  相似文献   

3.
SUMMARY. Dissolved ATP, defined as ATP which passes through 0.2 μm filters, was found in fresh water. During the spring diatom bloom in two eutrophic Danish lakes, concentrations of dissolved ATP varied between 0.1 and 3.8 μgl−1, constituting 14–76% of the total ATP (particulate plus dissolved ATP). The kinetics of the light emission obtained from mixing firefly enzyme with dissolved ATP demonstrated that the major proportion of the dissolved ATP was in fact ATP. Despite some variations, the seasonal changes in dissolved ATP paralleled the changes in the increasing phytoplankton population during the rise of the diatom blooms. The dissolved ATP increased after the diatom peak, indicating that release of ATP from the phytoplankton due to mortality may be a major source of dissolved ATP.
Consumption of dissolved ATP was evaluated in uptake experiments using 3H-ATP. Rates of uptake of 3H-ATP by micro-organisms (diameter 0.2–0.6 μm) proved to be close to the rates for 3H-D-glucose uptake. The variations in 3H-ATP uptake during the diatom blooms showed non-systematic changes and ranged between 1.0 and 15.8% h−1 (mean = 4.9% h−1) of the quantity added. Turnover rates for dissolved ATP varied between 12 and 730 ng l−1 h−1 (mean = 175 ng l−1). These rather high rates of turnover suggest that dissolved ATP is an important compound in the metabolism of freshwater bacteria.  相似文献   

4.
Oxygen uptake. heart rate and breathing frequencies were monitored in yearling Green turtles. Routine fed animals used about 100μ O2 g live turtle-1 h-1 at 25C; this value was not significantly affected by size or short term food deprivation. Starved turtle showed a doubling of oxygen uptake after a satiation meal and heightened uptake persisted for five days. Between 15 and 30C oxygen consumption increased with rising temperature; below 15C there was falling temperature. Vigorous activity increased oxygen uptake to two or three times thr routine fed levels.
Turtles swimming gently at 25C exhibited a heart rate of around 46–48 beats min-1; this rose to 64–68 beats min-1 during vigorous and continuous activity. Contrary to expectations profound bradycardia was not seen during diving; even during 10 min dives a rate of 25–28 beats min-1 was sustained. Significantly lower heart rates were only seen in turtles which were apparently asleep.  相似文献   

5.
SUMMARY 1. Unialgal cultures of three species common in the freshwater phytoplankton were used to test limitation of specific growth rate and final yield in defined media of low K+ concentration (range <0.3–6 μmol L−1 or mmol m−3).
2. Growth rate of the diatom Asterionella formosa was independent of K+ concentration above 0.7 μmol L−1. Final yield was dependent on initial concentration when accompanied by K+ depletion below this concentration, but not by lesser depletion with more residual K+. Analyses of particulate K in the biomass indicated a mean final cell content of 2.8 μmol K 10−8 cells, approximately 1.0% of the organic dry weight.
3. Less detailed work with the diatom Diatoma elongatum showed no dependence of growth rate or final yield upon the initial K+ concentration in the range 0.8–3.2 μmol L−1. The phytoflagellate Plagioselmis nannoplanctica suffered net mortality in the lowest concentration tested, 0.8 μmol L−1.
4. Comparison with the range of K+ concentration in natural fresh waters, including a depletion induced by an aquatic macrophyte, suggests that K+ is unlikely to limit growth of phytoplankton. Nevertheless, there can be correlation of K+ with lake trophy.  相似文献   

6.
Ears of wheat plants ( Triticum aestivum L. cv. Kolibri), which were given different and uniform K+-nutrition in two experiments, were cut at 2, 4 and 6 weeks after anthesis at 15 cm below the ear. These detached ears were fed 30 m M (experiment 1) or 15, 30, 60 or 90 m M 86Rb-K2 malate (experiment 2) and 146 m M [14C]-sucrose. After a pulse period of 6 and 4 h, respectively, the ears were transferred to identical non-labeled solutions for additional 0, 4, 8 or 20 h.
About 50% of the K+ and sucrose supplied was absorbed by detached ears. This rate declined with plant age and decreasing transpiration. Within the 6 and 4 h uptake period less than 7% of the absorbed K+, but 20% of the sucrose taken up were incorporated into the grain. During the chase period labeled K+ in the grain increased to 15% and 14C even to 50% of total tracer uptake. Incorporation of labeled K+ into the grain was not affected by the previous K+ nutrition of the plant and was proportional to the K+ concentration in the uptake solution. Transition of K+ from xylem into phloem during its acropetal transport is assumed. No evidence was found that the grain itself could control its uptake of K+.  相似文献   

7.
During starch degradation in intact isolated chloroplasts from Chlamydomonas reinhardtii gas exchange was studied with a mass spectrometer. Oxygen uptake by intact chloroplasts in the dark never exceeded 1.5% of the starch degradation rate [maximum 15 nmol O2 (mg Chl)−1 h−1 consumed. 1 000 nmol glucose (mg Chl)−1h−1 degraded]. Evolution of CO2 under aerobic conditions [9.8–28 nmol (mg Chl)−1 h−1] was stimulated by addition of 0.1–0.5 m M oxaloacetate [393–425 nmol CO2 (mg Chl)−1 h−1]. Pyridoxal phosphate (5 m M ) inhibited starch degradation by more than 80%, but had no effect on O2 uptake. Starch degradation rates and CO2 evolution did not differ under acrobic and anaerobic conditions. Increasing Pi in the reaction medium from 0.5 m M to 5.0 m M stimulated starch degradation by 230 and 260% under aerobic and anaerobic conditions, respectively. A rapid autooxidation of reduced ferredoxin was observed in a reconstituted system consisting of purified Chlamydomonas ferredoxin, purified Chlamydomonas NADP-ferredoxin oxidoreductase (EC 1.6.7.1) and NADPH. Addition of isolated thylakoids from C. reinhardtii did not affect the rate of O2 uptake. Our results clearly indicate the absence of any oxygen requirement during starch degradation in isolated chloroplasts.  相似文献   

8.
Abstract: The effect of plant succession on methane uptake was measured on intact soil cores collected from seven heathland sites. Six of the sites had undergone either secondary succession with grass or oak, ammonium fertilization or ploughing, while the seventh site was located in the native heathland. There was a positive relationship between methane uptake rate and time elapsed since the plant invasion had taken place in the native heathland. The native heathland site showed an insignificant atmospheric methane uptake of 0.01 mg CH4 m−2 d−1, whereas the established oak brushwood (70 years old) and the grass invaded heathland (13 years old) showed rates of 1.36 mg CH4 m−2 d−1 and 0.73 mg CH4 m−2 d−1, respectively. In the fertilized heathland plot (112 kg N ha−1 six years prior to this study) grass had become the dominating species and showed a methane oxidation rate of 0.28 mg CH4 m−2 d−1. Ploughing of the heathland resulted in methane oxidation rates seven times the rates measured in the native heathland. The results suggested that an increased future atmospheric nitrogen deposition in heathlands and other nutrient poor ecosystems may have a stimulating effect on the soil sink for atmospheric methane.  相似文献   

9.
Plasma membrane ferric reductase activity was enhanced 5-fold under iron limitation in the unicellular green alga Chlorella kessleri Fott et Nováková. Furthermore, ferric reductase activity in iron-limited cells was approximately 50% higher in the light than in the dark. In contrast, iron uptake rates of iron-limited cells were unaffected by light versus dark treatments. Rates of iron uptake were much lower than rates of ferric reduction, averaging approximately 2% of the dark ferric reduction rate. Ferric reduction was associated with an increased rate of O2 consumption in both light and dark, the increase in the light being approximately 1.5 times as large as in the dark. The increased rate of O2 consumption could be decreased by half by the addition of catalase, indicating that H2O2 is the product of the O2 consumption and that the increased O2 consumption is nonrespiratory. The stimulation of O2 consumption was almost completely abolished by the addition of bathophenanthroline disulfonate, a strong chelator of Fe2 + . Anaerobic conditions or the presence of exogenous superoxide dismutase affected neither ferric reduction nor iron uptake. We suggest that the O2 consumption associated with ferric reductase activity resulted from superoxide formation from the aerobic oxidation of Fe2 + , which is the product of ferric reductase activity. At saturating concentrations of Fe3 + chelates, ferric reductase activity is much greater than the iron uptake rate, leading to rapid oxidation of Fe2 + and superoxide generation. Therefore, O2 consumption is not an integral part of the iron assimilation process.  相似文献   

10.
Seasonal measurements of the oxygen and nitrate uptake by a reed swamp sediment were carried out in a shallow, eutrophic Danish lake, Arreskov Sø. The oxidation of organic carbon in the sediment by aerobic and nitrate respiration was 290 and 188 g C m−2 yr−1 respectively. During winter, nitrate respiration amounted to 94% of the total carbon oxidation, whereas it was zero during summer. On an annual basis nitrate respiration constituted 39% of total respiration. Sediment nitrate uptake was correlated to nitrate concentration. In consequence of this the nitrate uptake rates varied during the year from zero in summer to 55 mg N m−2 d−1 in spring.
Oxygen uptake rates varied from 30 to 250 mg O2 m−2 h−1 during the year, with a maximum uptake in August. The oxygen uptake per year was calculated to 860 g O2 m−2. The oxygen uptake rate was correlated to lake temperature and Kjeldahl nitrogen content of the sediment. The oxygen uptake rate, however, showed no correlation with loss on ignition of the sediment. A Q10-value of 2.2 was found for lake measurements in the temperature interval of 5–15°C. The corresponding O10-value in the laboratory was 2.6. A high microbial biomass indicated by the maximum content of Kjeldahl nitrogen and the lowest ratio of loss on ignition on Kjeldahl nitrogen appeared in late August, when the maximum oxygen uptake occurred. The oxygen uptake rate increased during the time interval from sampling to the start of the experiments.  相似文献   

11.
Abstract. The rates of uptake of 32P-labelled orthophosphate by whole root systems of young apple trees (M.9 rootslocks and Worcester Pearmain seedlings) were measured in solution culture. Using a solution depletion technique, the 32P-phosphate uptake rates per unit length, surface area or fresh weight of roots were determined as a function of 32P-phosphate concentration in solution at the root surface over the range 0.25–10 mmol m−3. The effect of P concentration within various plant parts on the relation between uptake rate and external P concentration was studied using plants differing in internal P levels.
The apparent minimutn P concentration below which P uptake ceased was of the order of 0.25–0.50 mmol m−3. Fluxes, inflows and unit absorption rates increased approximately proportionately with solution concentration up to 10mmolm−3. Except perhaps in the case of the low-P M.9 plant, there was no evidence of a diminishing returns type of relationship over the range of solution concentrations examined. The threshold P concentration in solution above which uptake rates cease to increase thus appears to be higher for apples than for other species.
At any given P concentration, fluxes, inflows and unit absorption rates were higher for M.9 than for Worcester and for low-P plants than for high-P plants. The difference between plants of different P status was more marked for M.9 and seems to be more closely related to shoot P levels than to root P.  相似文献   

12.
Activity of methanotrophic bacteria in Green Bay sediments   总被引:3,自引:0,他引:3  
Abstract Sediment pore water samples obtained from a 19 m station in Green Bay in Lake Michigan were examined for levels of ambient dissolved methane and copper, and for the potential for in situ methane oxidation by methanotrophs found within surface sediments. The in situ methane concentration in the upper oxic sediment layer ranged from 20–150 μmol · 1−1 at this station. The activity of methanotrophs and the kinetics of methane oxidation in these sediments were demonstrated by the uptake of radiolabeled methane. Ks values varied between 4.1–9.6 nmol · cm3 of sediment slurry. High Vmax values (12.7–35.2 nmol · cm−3 · h−1) suggest a large population of methanotrophs in the sediments. An average methane flux to the oxic sediments of 0.24 mol · m−2 · year−1 was calculated from the pore water methane gradients. Pore water concentrations of copper in the upper sediment layer ranged from 10–120 nmol · 1−1. Based upon the copper concentration, other measured parameters, and equilibrium conditions defined by WATEQF4, an estimate for dissolved free Cu2+ concentration of 5–38 nmol · 1−1 pore water was obtained. Several factors control the rate of methane oxidation, including oxygen, methane, and the bioavailability of free Cu2+.  相似文献   

13.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 uptake by roots, both uptake of K+ and NO3 and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 and that of K+; an increase in light intensity produced a much greater stimulation of NO3 uptake than of K+ uptake. On the other hand, secretion of NO3 into the xylem was tightly coupled to that of K+, and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2-malate shuttle on the regulation by the shoot of K+ and NO3 secretion in the xylem, which is linked to NO3 uptake, while K+ uptake is independent of this regulation mechanism.  相似文献   

14.
A reappraisal of oxygen uptake by Sarotherodon mossambicus was undertaken using a continuous flow respirometer. Measurements were obtained over the temperature range 16°C–37°C for fish weighing between 10 g and 150 g. Oxygen uptake was converted to energy equivalents ( Q ox) using the value 13.68 J mg O2–1and the routine metabolic energy expenditure can be described by the equation E =0.0086 t 2 0783 M 0 652 where E is the energy requirement for routine metabolism expressed in J h-1, t the temperature in °C and M the mass in g.  相似文献   

15.
The effect of dissolved oxygen partial pressure on the accumulation of astaxanthin in the green alga Haematococcus lacustris ( Gir.) Rostaf (UTEX16) was studied in N-limited continuous chemostat cultures. The steady-state astaxanthin content measured against culture volume, cell number, and biomass dry weigh of Haematococcus cultures was proportional to the dissolved O2 partial pressure in the culture medium, over the range of 0–50% O2 The steady-state biomass dry weight concentrations remained at between 0.52 and 0.57 g. L-1 over the range of dissolved O2 partial pressure studied. Steady-state cell densities at dissolved O2 partial pressures above the air saturation level (1.13–1.58 × 105 cells.mL-1) were about half of that measured at lower dissolved O2 partial pressures (2.42–2.63 × 105 cells.mL-1). Both biflagellated zoospores and nonmotile aplanospores were found at steady state. The fraction of nonmotile cells was higher at dissolved O2 partial pressures above the air saturation level (94.44–98.01%) than at dissolved O2 partial pressure below the air level (79.64–86.12 and 91.75% ).  相似文献   

16.
Abstract: CRA has been developing bioleaching for the treatment of low-grade refractory gold resources. In lhe course of dcveloping a biolcach process for a pyrite concentrate at Bougainville Copper Limited (BCL), CRA has confronted the myriad of problems associated with proving a concept at a small scale, to the design of a conceptual flowsheet. A phased programme was initiated to develop the project. Laboratory scale batch studies indicated that the pyrite concentrate was amenable to bacterial leaching and subsequent cyanidatkm gold recovery. Large scale continuous leaching was then performed to delincate the major operating wtriables. In conjunction with this programme, CRA has also been addressing the problem of reactor scale-up. The success of the bioleach process is dependent on the design of large, energy-efficient reactors, with reactor sizes of the order of 1000 m3 contemplated. Results from these scale-up studies are presented in this paper.  相似文献   

17.
Models for the regulation of K+ uptake in higher plant roots have become more complex as studies have moved from the level of excised low-salt roots to that of intact plants grown under fully autotrophic conditions. In this paper we suggest that some of the differences between the conditions are qualitative, possibly requiring fundamental changes to the model, rather than simply quantitative.
The uptake of K+ by low-salt roots of Zea mays L. [(A619 x Oh 43) x A632], was independent of Na+ concentration over a wide range. However, independence of Na+ was not the case in plants grown on complete nutrient medium in the light: inclusion of Na+ in the uptake medium enhanced K+ uptake. In the presence of Na+, K+ uptake rates were similar in whole plants with high root K+ contents to rates in excised or intact, low-salt roots.  相似文献   

18.
Oxygen uptake rates and yolk-inclusive dry weiGhts were measured during the egg and yolk-sac larval stages of milkfish, Chanos chanos (Forsskal). Oxygen uptake by eggs and yolk-sac larvae was measured to assess the effects of four salinities (20,25,30,35 ppt) at 28°C. The effects of three temperatures (23,28,33°C) on oxygen uptake by yolk-sac larvae were determined at a salinity of 35 ppt. Dry weights were measured throughout embryonic development at 28°C and the yolk-sac stage at 23.28 and 33°C.
Oxygen uptake rates of eggs increased more than fivefold during embryogenesis (0.07±0.03 to 0.40 ± 03 μl O2 egg −1 h −1;blastula to prehatch stage). Larval oxygen uptake did not change with age but was affected by rearing temperature (0.33 ± 0.08, 0.44 ± 0.07 and 0.63 ± 0.13 μl O2 larva −1 h−1 at 23, 28 and 33°C, respectively; Q10= 1.93). Acute temperature changes from 28 to 33°C caused significant increases in oxygen uptake by embryos (Q 10= 1.69–3.58) and yolk-sac larvae (Q 10=2.55). Salinity did not affect metabolic rates.
Dry weight of eggs incubated at 28°C decreased 13% from fertilization to hatching. Incubation temperatures from 23–33°C did not affect dry weights at hatching. Rearing temperatures significantly affected the rate of larval yolk absorption (Q 10= 2.25).  相似文献   

19.
Photosynthetically active radiation (PhAR) is apparently the environmental factor having the greatest influence on leaf thickness for Plectranthus parviflorus Henckel (Labiatae). A four-fold increase in leaf thickness from 280 to 1170 μm occurred as the PhAR was raised from 1.3 to 32.5 mol m−2 day−1. Compared to a constant PhAR of 2.5 mol m−2 day−1, a PhAR of 32.5 mol m−2 day−1 for one week during the first week (with return to 2.5 mol m−2 day−1 during the second and third weeks) led to an increase in final leaf thickness by 323 μm (to 802 μm). When increased PhAR was applied during the second week the increase in final thickness over the control was 217 μm, and when increased PhAR was applied during the third week it was 99 μm. However, leaf thickness was not simply responding to total daily PhAR, since a leaf 450 μm thick could occur at a low instantaneous PhAR for a long daytime (total daily PhAR of 1.5 mol m−2 day−1) and at a high PhAR for a short daytime (4.5 mol m−2 day−1). Total daily CO2 uptake (net photosynthesis) was approximately the same in the two cases, suggesting that this is an important factor underlying the differences in leaf thickness. Leaf thickness is physiologically important, since thicker leaves tend to have greater mesophyll surface area per unit leaf area ( A mes/ A ) and hence higher photosynthetic rates.  相似文献   

20.
The phytoaccummulation of arsenic by Brassica juncea (L.) was investigated for varying concentrations selected within the range that is evident in Bangladeshi soil. B. juncea (Rai and BARI-11) was grown in the hydroponic media under greenhouse condition with different concentrations (0.5, 1.0, 15, 30, 50 and 100 ppm) of sodium arsenite. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to analyze the data. Mapping of potential area of phytoaccumulation of arsenic by B. juncea was done using Geographic information system (GIS). Arsenic was detected at lower concentrations (0.5 and 1.0 ppm) only at root system of the plant. For higher concentrations (15, 30, and 50 ppm) arsenic was detected both in the root and shoot systems. The results suggested that at 15 and 50 ppm uptake was higher compared to 30 ppm. For 100 ppm of arsenic no plant growth was observed. In Bangladesh, where concentration of arsenic is at lower level and present only at rooting zone, B. juncea may be used for phytoaccumulation of arsenic keeping usual agronomic practices. However, for higher concentrations, B. juncea can be regarded as a good accumulator of arsenic where uptake of arsenic was up to 1% of total biomass of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号