首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was centered on the changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate or gamma-aminobutyric acid (GABA), and that possess convulsant or anticonvulsant properties. The onset of seizures induced by various convulsant agents was associated with a decreased content of GABA and an increased content of glutamate in synaptosomes. The concurrent administration of pyridoxine prevented both the biochemical changes and the convulsions. The administration of gabaculine to mice resulted in large increases in the GABA content of synaptosomes that were counteracted by decreases in glutamate, glutamine, and aspartate levels such that the total content of the four amino acids remained unchanged. The administration of aminooxyacetic acid (0.91 mmol/kg) resulted initially in seizure activity, but subsequently in an anticonvulsant action. No simple relationship existed between the excitable state of the brain induced by aminooxyacetic acid and the changes in the synaptosomal levels of any of the amino acid transmitters. A hypothesis was, however, formulated that explained the convulsant-cum-anticonvulsant action of aminooxyacetic acid on the basis of compartmentation of GABA within the nerve endings.  相似文献   

2.
It is known that heating at 50 degrees C for 10 minutes inhibits phosphate dependent glutaminase (PDG) activity of renal cortex, without any effect on gamma-glutamyl transpeptidase (gamma GT) and its phosphate independent glutaminase (PIG) activity. The effect of heating on PIG and total gamma GT activities was evaluated in renal cortex homogenates of rats both in normal acid-base equilibrium and in chronic metabolic acidosis (CMA). Homogenates were incubated in a medium containing glutamine 2 mM, no phosphate, at pH 7,40. PIG activity was measured as glutamate production and total gamma GT activity as ammonia production. In normal rats PIG activity was unchanged after heating, whereas a significant decrease of total gamma GT activity was observed (p less than 0,01). CMA caused an increase in both PIG and total gamma GT activity (p less than 0,01) and these increased to a further extent after heating. In both normal and acidotic rats the glutamate production/ammonia production ratio rose to about 1. In conclusion: a) in the experimental setting used for this study PDG activity does not intervene in glutamate and ammonia production from glutamine; b) heating causes an inhibition of gamma GT activities, other than PIG, both in normal and in acidotic rats; c) in CMA heating increases PIG activity of gamma GT.  相似文献   

3.
The effects of adrenal cortical hormone and thyroxine on brain glutamic acid, gamma-amino butyric acid (GABA) and glutamine were studied in rats fed on the amino acid imbalanced diet (8% casein diet supplemented with 0.3% L-threonine). The studies revealed that the decrease in brain glutamic acid and GABA levels in threonine imbalance was recovered by hydrocortisone supplementation. The increased level of brain glutamine in threonine imbalance could not, however, be reversed by hydrocortisone supplementation. Thyroxine supplementation was found to have no impact on any of the members of glutamic acid family in the brain of rats receiving the threonine-imbalanced diet. It was suggested that the decreased levels of brain glutamic acid and GABA in threonine imbalance were caused by diminished adrenal cortical function and the influence of adrenal cortical hormone could be suggested to reside at the level of formation of both glutamic acid and GABA.  相似文献   

4.
Amino acid concentrations have been determined in rat brain regions (cortex, striatum, cerebellum, and hippocampus) by HPLC after administration of acute anticonvulsant doses of sodium valproate (400 mg/kg, i.p.) and -vinyl-GABA (1g/kg, i.p.). After valproate administration the GABA level increases only in the cortex; aspartic acid concentration decreases in the cortex and hippocampus, and glutamic acid decreases in the hippocampus and striatum and increases in the cortex and cerebellum. There are no changes in the concentrations of glutamine, taurine, glycine, serine, and alanine following valproate administration. Only the GABA level increases in all the regions after -vinyl-GABA administration. Cortical analyses 2, 4 and 10 minutes after pulse labeling with 2-[14C]glucose, i.v., shown no change in the rate of cortical glucose utilization in the valproate treated group. The rate of labeling of glutamic acid is also unchanged, but the rate of labeling of GABA is reduced following valproate administration. After -vinyl-GABA administration there is no change in the rate of labeling of GABA. These biochemical findings can be interpreted in terms of a primary anticonvulsant action of valproate on membrane receptors with secondary effects on the metabolism of amino acid neurotransmitters. This contrasts with the primary action of -vinyl-GABA on GABA-transaminase activity.This paper is dedicated to Dr. Derek Richter on his sevety-fifth birthday  相似文献   

5.
Summary The -glutamyl cycle is considered to function in the membrane transport of amino acids, particularly glutamine and cysteine. When groups of Atlantic salmon were fed either a control diet containing 45% crude protein or an amino acid diet (of similar overall amino acid composition but containing elevated levels of glutamine and cysteine) for 16 weeks, weight gains were significantly greater in the former group than in those given the amino acid diet. There were no significant differences between treatments in -glutamyl transpeptidase (GT) activity in the proximal intestine; in distal intestine there was significantly more activity in control fish. Mean levels of GSH were higher in tissues (pyloric caeca, distal intestine and kidney) of amino acid diet fish than in those of control fish. Glutamine was less effective as a -glutamyl acceptor than several other amino acids when tested with salmon caecal GT. There were no morphological adaptations to the two feeds. Nutrient uptake studies showed an increased uptake of glutamine, but decreased uptakes of proline and methionine in proximal intestine of salmon fed amino acid diet. Much the greater part of the glutamine uptake, even at high concentrations was shown to be by Na+ dependent processes. There is no evidence that GT itself is Na+ dependent. The results do not support the view that the -glutamyl cycle and GT in particular are involved in the transport of amino acids in the intestine and are discussed in this context.Abbreviations GT -glutamayl transpeptidase - GSH reduced glutathione  相似文献   

6.
We do not know the mode of action of the ketogenic diet in controlling epilepsy. One possibility is that the diet alters brain handling of glutamate, the major excitatory neurotransmitter and a probable factor in evoking and perpetuating a convulsion. We have found that brain metabolism of ketone bodies can furnish as much as 30% of glutamate and glutamine carbon. Ketone body metabolism also provides acetyl-CoA to the citrate synthetase reaction, in the process consuming oxaloacetate and thereby diminishing the transamination of glutamate to aspartate, a pathway in which oxaloacetate is a reactant. Relatively more glutamate then is available to the glutamate decarboxylase reaction, which increases brain [GABA]. Ketosis also increases brain [GABA] by increasing brain metabolism of acetate, which glia convert to glutamine. GABA-ergic neurons readily take up the latter amino acid and use it as a precursor to GABA. Ketosis also may be associated with altered amino acid transport at the blood-brain barrier. Specifically, ketosis may favor the release from brain of glutamine, which transporters at the blood-brain barrier exchange for blood leucine. Since brain glutamine is formed in astrocytes from glutamate, the overall effect will be to favor the release of glutamate from the nervous system.  相似文献   

7.
Ammonia contents in the brain stem and prosencephalon markedly increased in a rat model of acute hepatic failure induced by partial hepatectomy following CCl4 intoxication. In hepatic failure rats, synaptosomal glutamic acid (excitatory amino acid neurotransmitter) contents decreased significantly in the prosencephalon, and GABA (inhibitory amino acid neurotransmitter) contents decreased significantly in the brain stem. The molar ratio of glutamic acid to glutamine significantly diminished in the brain stem. Glutamic acid decarboxylase activity in the synaptosomes and the binding of [3H]glutamic acid and [3H]GABA to synaptosomal membrane preparations were unchanged in acute hepatic failure rats. These results indicate than an insufficiency of both excitatory and inhibitory neurotransmitter amino acids is induced by high ammonia contents in the synaptosomes of the brain stem during acute hepatic failure.  相似文献   

8.
The role of gamma-aminobutyric acid (GABA) mechanism on the synthesis of nitric oxide (NO) has been investigated by measuring the activity of nitric oxide synthase (NOS) and the concentration of NO in rat brain 15 min after administration of anticonvulsant doses of diazepam (0.25 and 0.5 mg/kg) which is known to activate GABA A receptor for its anticonvulsant action. Diazepam enhanced both NOS activity and the concentration of NO in a dose-dependent manner. A reversal has been observed in animals treated with a convulsant dose of picrotoxin (5 mg/kg) which is known to produce convulsions by blocking GABA A receptor mechanism. These results suggest that a functional interaction occurs between GABA A receptor activity and NO synthesis in the brain.  相似文献   

9.
Y F Chang  V Hargest  J S Chen 《Life sciences》1988,43(15):1177-1188
L-lysine, an essential amino acid for man and animals, and its metabolite pipecolic acid (PA) have been studied for their effects on pentylenetetrazol (PTZ)-induced seizures in mice. L-Lysine or L-PA i.p. significantly increased clonic and tonic latencies in a dose-dependent manner against 90 mg/kg PTZ-induced seizures. L-Lysine but not L-PA enhanced the anticonvulsant effect of diazepam (DZ) (0.2 mg/kg). L-PA (0.1 mmol/kg) i.c.v. showed a slight decrease in clonic latency; it did not enhance the antiseizure activity of DZ; it caused seizures at 0.6 mmol/kg. D-PA (0.1 mmol/kg) i.c.v. displayed an opposite effect compared to its L-isomer. The anticonvulsant effect of L-lysine in terms of increase in seizure latency and survival was even more amplified when tested with a submaximal PTZ concentration (65 mg/kg). L-Lysine showed an enhancement of specific 3H-flunitrazepam (FZ) binding to mouse brain membranes both in vitro and in vivo. The possibility of L-lysine acting as a modulator for the GABA/benzodiazepine receptors was demonstrated. Since L-PA showed enhancement of 3H-FZ binding only in vitro but not in vivo, the anticonvulsant effect of L-PA may not be linked to the GABA/benzodiazepine receptor.  相似文献   

10.
Abstract: The glutamine cycle has been proposed as a pathway in which glutamine synthesized in glia provides substrate for synthesis of the neurotransmitters glutamate and GABA as they are lost from neurons. To test whether GABA may regulate this pathway, the effect of elevated GABA on the glial enzyme glutamine synthetase was examined in rat brain. Repeated subcutaneous injections of the antiepileptic GABA transaminase inhibitor γ-vinylGABA at a dose of 150 mg/kg per day for 21 days reduced glutamine synthetase activity by 36% in the cortex and 22% in the cerebellum. At 30 mg/kg per day, glutamine synthetase activity was reduced by 9.5% in the cortex but unchanged in the cerebellum. The reductions were brain specific because the skeletal muscle and liver enzymes were unaffected by γ-vinylGABA administration. Amino acid analysis of the cortex from γ-vinylGABA-treated rats demonstrated a 270% increase in GABA levels after 150 mg/kg but no change after 30 mg/kg. GABA levels and glutamine synthetase activity were inversely correlated. The 150 mg/kg dose significantly lowered cortical glutamine and glutamate levels. The decline in brain glutamine synthetase activity with chronic γ-vinylGABA administration developed gradually over time and may be due to the slow turnover of this enzyme in vivo.  相似文献   

11.
The uptake kinetics for four amino acids (cystine, glutamine, methionine, and alanine) which are among the best gamma-glutamyl acceptors have been determined for normal human fibroblasts and for a cell line containing undetectable quantities (< 0.5% normal mean) of gamma-glutamyl transpeptidase activity. Apparent Km and V(max) for uptake for each of the four amino acids were normal in the mutant fibroblasts. Insulin increased the uptake of alpha-aminoisobutyrate as in control cells. levels of 16 amino acids were also normal in this cell strain; the intracellular concentrations of phenylalanine, cystine, and cysteine were increased. In human fibroblasts, amino acid transport appears to proceed normally in the absence of active gamma-glutamyl transpeptidase.  相似文献   

12.
Sasaki K  Hatta S  Wada K  Ohshika H  Haga M 《Life sciences》2000,67(6):709-715
We previously reported that bilobalide, a constituent of Ginkgo biloba L. leaves, protected mice against convulsions induced by 4-O-methylpyridoxine (MPN). To elucidate the mechanism of the anticonvulsant activity of bilobalide, this study examined the effect of bilobalide on MPN-induced changes in the levels of gamma-aminobutyric acid (GABA) and glutamate, and in the activity of glutamic acid decarboxylase (GAD) in the hippocampus, cerebral cortex and striatum of the mouse. GABA levels and GAD activity in the hippocampus and cerebral cortex were significantly enhanced by bilobalide treatment (30 mg/kg, p.o., for 4 days) alone. MPN significantly decreased GABA levels and GAD activity in the three brain regions tested compared with those in the control. Pretreatment with bilobalide effectively suppressed the MPN-induced reduction in GABA levels and GAD activity in the hippocampus and cerebral cortex. On the other hand, there were no significant differences in the glutamate levels in the three regions despite various treatments. These results suggested that bilobalide prevents MPN-induced reduction in GABA levels through potentiation by bilobalide of GAD activity, and this effect of bilobalide contributes to its anticonvulsant effect against MPN-induced convulsions.  相似文献   

13.
Abstract– Acute treatment of cobalt-induced epilepsy in rats with amino-oxyacetic acid (20-60 mg/kg intraperitoneally) resulted in a short period (30-90 min) of epileptic spike suppression. In contrast sodium n -dipropylacetate (100-400 mg/kg intraperitoneally) had no effect on spike frequencies. Chronic treatment of cobalt epileptic rats with amino-oxyacetic acid (2.5-10 mg/kg intraperitoneally daily) or sodium n -dipropylacetate (200-400 mg/kg intraperitoneally daily) elevated brain GABA concentrations significantly and reduced brain glutamate decarboxylase activity relative to control saline-injected cobalt epileptic rats. Brain γ-aminobutyrate aminotransferase activity was significantly reduced by chronic treatment with amino-oxyacetic acid, whereas chronic sodium n -dipropylacetate had no effect on brain γ-aminobutyrate aminotransferase activity although elevating brain GABA. Amino-oxyacetic acid (2.5-10 mg/kg intraperitoneally per day) reduced the frequency of epileptic spikes in the secondary foci of cobalt epileptic rats. The anticonvulsant action of amino-oxyacetic acid was most marked at 5 mg/kg intraperitoneally where a secondary focus failed to develop in treated cobalt epileptic rats. However, there was no simple relationship between the elevation of brain GABA and the anticonvulsant action of amino-oxyacetic acid. Thus focal GABA was higher in rats given intraperitoneal amino-oxyacetic acid (10 mg/kg) but the anticonvulsant action of amino-oxyacetic acid was less marked at this dose. Sodium n -dipropylacetate (200-400 mg/kg intraperitoneally per day) had no long-term anticonvulsant action in this model of epilepsy. It is concluded that the anticonvulsant action of sodium n -dipropylacetate, and probably that of amino-oxyacetic acid, is not likely to be mediated through a mechanism involving elevation of brain GABA.  相似文献   

14.
We have previously demonstrated that 4-day-treatment of mice with bilobalide, a sesquiterpene of Ginkgo biloba L., increases GABA levels in mouse brain, but, effects of chronic treatment with it are not clear. To study effects of chronic treatment of mice with bilobalide on amino acid levels in the brain, we determined the levels of aspartate, glutamate, serine, glutamine, glycine, taurine and GABA in the hippocampus, striatum and cortex. Bilobalide (3 mg/kg/day) was administered orally to 4-week-old mice for 40 days. Bilobalide treatment resulted in a significant increase in the levels of glutamate, aspartate, gamma-aminobutyric acid (GABA), and glycine in the hippocampus of mice compared with the control. An increased level of glycine after bilobalide treatment was also detected in the striatum. In the cortex, bilobalide increased the GABA level, whereas it decreased the level of aspartate. These changes in the levels of various amino acids may be involved in the broad spectrum of pharmacological activities of the extract of Ginkgo biloba on the central nervous system.  相似文献   

15.
The uptake of seven amino acids, -aminoisobutyric acid (AIB), cyclo-leucine (cyclo-Leu), -aminobutyric acid (GABA), glycine (Gly), glutamic acid (Glu), lysine (Lys), and taurine (Tau), representatives of different amino acid transport systems, was studied in slices of brain from Tokay lizards and White Leghorn chicks. In descending order, the rate of the initial uptake of the amino acids in both species was Glu>Gly>GABA>Cyclo-Leu>AIB>Lys>Tau. The substrate specificities and the differences in sodium and temperature dependence of the uptake of the amino acids indicate the presence of several distinct amino acid transport systems, some sodium-dependent and some sodium-independent. The structural specificity of amino acid transport classes in the brain of these species is similar to that in other vertebrate brain preparations.Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

16.
Urea cycle disorders, hyperammonemia and neurotransmitter changes   总被引:1,自引:0,他引:1  
J P Colombo 《Enzyme》1987,38(1-4):214-219
In congenital urea cycle disorders, detoxification of ammonia is impaired, leading to hyperammonemia. Ammonia is the major component causing the acute neurological disturbances. It may influence the supply of substrate and its transport at the blood-brain barrier (BBB) which results in alterations in the synthesis and catabolism of neurotransmitters in the brain. In hyperammonemic rats, the uptake of tryptophan into the brain is increased with an augmented flux through the serotonin pathway. In the forebrain, glutamine as well as amino acids transported with the same L-carrier system, such as phenylalanine, tyrosine and tryptophan, are elevated. It is postulated that the increased transport of tryptophan at the BBB occurs in exchange with glutamine. Methionine sulfoximine (MSO) inhibits glutamine synthetase in the cerebral cortex. The activity drops from 5.85 +/- 0.38 to 1.07 +/- 0.37 mumol/min/g wet weight. Under MSO, the brain tryptophan uptake also decreased to 64.2 +/- 4.5% in hyperammonemic rats, to 54.1 +/- 8.0% in untreated hyperammonemic rats, whereas without MSO an increase of tryptophan uptake was observed. An effect of glutamine on tryptophan transport could also be demonstrated using brain microvessel preparations as a model for the BBB. Our findings indicate that preloading isolated microvessels with L-glutamine increases tryptophan uptake into the endothelia when L-glutamine is at concentrations found in brain homogenates under hyperammonemia. Since brain microvessels do not contain glutamine synthetase activity, enzymes from the gamma-glutamyl cycle may be involved in the glutamine-mediated tryptophan transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of different treatments on amino acid levels in neostriatum was studied to throw some light on the synthesis and metabolism of gamma-aminobutyric acid (GABA). Irreversible inhibition of GABA transaminase by microinjection of gamma-vinyl GABA (GVG) led to a decrease in aspartate, glutamate, and glutamine levels and an increase in the GABA level, such that the nitrogen pool remained constant. The results indicate that a large part of brain glutamine is derived from GABA. Hypoglycemia led to an increase in the aspartate level and a decrease in glutamate, glutamine, and GABA levels. The total amino acid pool was decreased compared with amino acid levels in normoglycemic rats. GVG treatment of hypoglycemic rats led to a decrease in the aspartate level and a further reduction in glutamate and glutamine levels. In this case, GABA accumulation continued, although the glutamine pool was almost depleted. The GABA level increased postmortem, but there were no detectable changes in levels of the other amino acids. Pretreatment of the rats with hypoglycemia reduced both glutamate and glutamine levels with a subsequent decreased postmortem GABA accumulation. The half-maximal GABA synthesis rate was obtained when the glutamate level was reduced by 50% and the glutamine level was reduced by 80%.  相似文献   

18.
Our objective was to study brain amino acid metabolism in response to ketosis. The underlying hypothesis is that ketosis is associated with a fundamental change of brain amino acid handling and that this alteration is a factor in the anti-epileptic effect of the ketogenic diet. Specifically, we hypothesize that brain converts ketone bodies to acetyl-CoA and that this results in increased flux through the citrate synthetase reaction. As a result, oxaloacetate is consumed and is less available to the aspartate aminotransferase reaction; therefore, less glutamate is converted to aspartate and relatively more glutamate becomes available to the glutamine synthetase and glutamate decarboxylase reactions. We found in a mouse model of ketosis that the concentration of forebrain aspartate was diminished but the concentration of acetyl-CoA was increased. Studies of the incorporation of 13C into glutamate and glutamine with either [1-(13)C]glucose or [2-(13)C]acetate as precursor showed that ketotic brain metabolized relatively less glucose and relatively more acetate. When the ketotic mice were administered both acetate and a nitrogen donor, such as alanine or leucine, they manifested an increased forebrain concentration of glutamine and GABA. These findings supported the hypothesis that in ketosis there is greater production of acetyl-CoA and a consequent alteration in the equilibrium of the aspartate aminotransferase reaction that results in diminished aspartate production and potentially enhanced synthesis of glutamine and GABA.  相似文献   

19.
The system N transporter SN1 has been proposed to mediate the efflux of glutamine from cells required to sustain the urea cycle and the glutamine-glutamate cycle that regenerates glutamate and gamma-aminobutyric acid (GABA) for synaptic release. We now show that SN1 also mediates an ionic conductance activated by glutamine, and this conductance is selective for H(+). Although SN1 couples amino acid uptake to H(+) exchange, the glutamine-gated H(+) conductance is not stoichiometrically coupled to transport. Protons thus permeate SN1 both coupled to and uncoupled from amino acid flux, providing novel mechanisms to regulate the transfer of glutamine between cells.  相似文献   

20.
The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号