共查询到20条相似文献,搜索用时 0 毫秒
1.
Spontaneous membrane adsorption, folding and insertion of the synthetic WALP16 and KALP16 peptides was studied by computer simulations starting from completely extended conformations. The peptides were simulated using an unmodified all-atom force field in combination with an efficient Monte Carlo sampling algorithm. The membrane is represented implicitly as a hydrophobic zone inside a continuum solvent modelled using the generalized Born theory of solvation. The method was previously parameterized to match insertion energies of hydrophobic side chain analogs into cyclohexane and no parameters were optimized for the present simulations. Both peptides rapidly precipitate out of bulk solution and adsorb to the membrane surface. Interfacial folding into a helical conformation is followed by membrane insertion. Both the peptide conformations and their location in the membrane are strongly temperature dependent. The temperature dependent behaviour can be summarized by fitting to a four-state model, separating the system into folded and unfolded conformers, which are either inserted into the membrane or located at the interfaces. As the temperature is lowered the dominant peptide conformation of the system changes from unfolded surface bound configurations to folded surface bound states. Folded trans-membrane conformers represent the dominant configuration at low temperatures. The analysis allows direct estimates of the free energies of peptide folding and membrane insertion. In the case of WALP the quality of the fit is excellent and the thermodynamic behaviour is in good agreement with expected theoretical consideration. For KALP the fit is more problematic due to the large solvation energies of the charged lysine residues. 相似文献
2.
Maria Maddalena Sperotto 《European biophysics journal : EBJ》1997,26(5):405-416
A theoretical model is proposed for the association of trans-bilayer peptides in lipid bilayers. The model is based on a lattice model for the pure lipid bilayer, which accounts accurately for the most important conformational states of the lipids and their mutual interactions and statistics. Within the lattice formulation the bilayer is formed by two independent monolayers, each represented by a triangular lattice, on which sites the lipid chains are arrayed. The peptides are represented by regular objects, with no internal flexibility, and with a projected area on the bilayer plane corresponding to a hexagon with seven lattice sites. In addition, it is assumed that each peptide surface at the interface with the lipid chains is partially hydrophilic, and therefore interacts with the surrounding lipid matrix via selective anisotropic forces. The peptides would therefore assemble in order to shield their hydrophilic residues from the hydrophobic surroundings. The model describes the self-association of peptides in lipid bilayers via lateral and rotational diffusion, anisotropic lipid-peptide interactions, and peptide-peptide interactions involving the peptide hydrophilic regions. The intent of this model study is to analyse the conditions under which the association of trans-bilayer and partially hydrophilic peptides (or their dispersion in the lipid matrix) is lipid-mediated, and to what extent it is induced by direct interactions between the hydrophilic regions of the peptides. The model properties are calculated by a Monte Carlo computer simulation technique within the canonical ensemble. The results from the model study indicate that direct interactions between the hydrophilic regions of the peptides are necessary to induce peptide association in the lipid bilayer in the fluid phase. Furthermore, peptides within each aggregate are oriented in such a way as to shield their hydrophilic regions from the hydrophobic environment. The average number of peptides present in the aggregates formed depends on the degree of mismatch between the peptide hydrophobic length and the lipid bilayer hydrophobic thickness: The lower the degree of mismatch is the higher this number is. Received: 30 December 1996 / Accepted: 9 May 1997 相似文献
3.
Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes 总被引:2,自引:0,他引:2
Hagfish intestinal antimicrobial peptides (HFIAPs) are a family of polycationic peptides exhibiting potent, broad-spectrum bactericidal activity. In an attempt to unravel the mechanism of action of HFIAPs, we have studied their interaction with model membranes. Synthetic HFIAPs selectively bound to liposomes mimicking bacterial membranes, and caused the release of vesicle-encapsulated fluorescent markers in a size-dependent manner. In planar lipid bilayer membranes, HFIAPs induced erratic current fluctuations and reduced membrane line tension according to a general theory for lipidic pores, suggesting that HFIAP pores contain lipid molecules. Consistent with this notion, lipid transbilayer redistribution accompanied HFIAP pore formation, and membrane monolayer curvature regulated HFIAP pore formation. Based on these studies, we propose that HFIAPs kill target cells, at least in part, by interacting with their plasma membrane to induce formation of lipid-containing pores. Such a membrane-permeabilizing function appears to be an evolutionarily conserved host-defense mechanism of antimicrobial peptides. 相似文献
4.
Kahya N Scherfeld D Bacia K Poolman B Schwille P 《The Journal of biological chemistry》2003,278(30):28109-28115
Confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS) have been employed to investigate the lipid spatial and dynamic organization in giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/cholesterol. For a certain range of cholesterol concentration, formation of domains with raft-like properties was observed. Strikingly, the lipophilic probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-C18) was excluded from sphingomyelin-enriched regions, where the raft marker ganglioside GM1 was localized. Cholesterol was shown to promote lipid segregation in dioleoyl-phosphatidylcholine-enriched, liquid-disordered, and sphingomyelin-enriched, liquid-ordered phases. Most importantly, the lipid mobility in sphingomyelin-enriched regions significantly increased by increasing the cholesterol concentration. These results pinpoint the key role, played by cholesterol in tuning lipid dynamics in membranes. At cholesterol concentrations >50 mol%, domains vanished and the lipid diffusion slowed down upon further addition of cholesterol. By taking the molecular diffusion coefficients as a fingerprint of membrane phase compositions, FCS is proven to evaluate domain lipid compositions. Moreover, FCS data from ternary and binary mixtures have been used to build a ternary phase diagram, which shows areas of phase coexistence, transition points, and, importantly, how lipid dynamics varies between and within phase regions. 相似文献
5.
K Anzai M Hamasuna H Kadono S Lee H Aoyagi Y Kirino 《Biochimica et biophysica acta》1991,1064(2):256-266
We made use of a planar lipid bilayer system to examine the action of synthetic basic peptides which model the prepiece moiety of mitochondrial protein precursors and have antibacterial activity against Gram-positive bacteria. The sequences of the peptides used were as follows: Ac-(Ala-Arg-Leu)3-NHCH3 (3(3], Ac-(Leu-Ala-Arg-Leu)2-NHCH3 (4(2], Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], Ac-(Leu-Leu-Ala-Arg-Leu)2-NHCH3 (5(2]. These peptides interacted differently with planar lipid bilayer membranes and membrane conductance increased by the formation of ion channels. The effects of the peptides on the macroscopic current-increase and on the probability of channel formation, at the single channel level were in the order of 4(3) greater than 4(2) approximately 5(2) much greater than 3(3), a finding which correlates with the antibacterial activity of these peptides. The micromolar (microM) order concentration at which the channel was formed resembles that causing antibacterial activity. Thus, the peptide antibacterial activity may occur through an increase in ion permeability of the bacterial membrane. The single-channel properties were investigated in detail using 4(3), the peptide with the highest ion channel-forming activity. Many types of channels were observed with respect to conductance (2-750 pS) and voltage dependency of gating. However, the channels were all cation-selective. These results suggest that the ion channels formed by peptide 4(3) may be able to take on a variety of conformations and/or assembly. 相似文献
6.
The floating membrane vesicle is fixed by the counter solution flow in different points along the radius of a cylinder electrophoretic chamber, which permits to measure the vesicle electrophoretic mobility (EM). Close state condition of the chamber is provided for by the capillary system successively connected with the chamber. Relationship between EM of bimolecular lipid membranes (BLM) and pH and ionic concentration of aqueous solution qualitatively coincides with similar relationship for liposomes. The EM value of BLM essentially decreases in solution containing polyene antibiotics nystatine and levorin when derivative of cholesterol having 3betaOH-groups is present in the membrane. 相似文献
7.
Cristina Larios Jorge Casas Concepció Mestres Isabel Haro M Asunción Alsina 《Luminescence》2005,20(4-5):279-281
The name HGV/GBV-C remains as an acronym for hepatitis G virus (HGV) and GB virus-C (GBV-C), strain variants of this enveloped RNA virus independently but simultaneously discovered in 1995. Nowadays there is no evidence that it causes hepatitis in humans either during initial infection or after long-term carriage, but it has been recently related with HIV regarding the inhibition of progression to AIDS.The overall genomic organization of HGV/GBV-C is similar to that of hepatitis C virus (HCV) and other members of the Flavivirus family in Hepacivirus genus. Although a stretch of conserved, hydrophobic amino acids within the envelop glycoprotein of HCV has been proposed as the virus fusion peptide, the mode of entry of GBV-C/HGV into target cells is at present unknown. In the present work, sequences derived from the structural E2-protein of HGV/GBV-C have been selected by means of semiempirical methods and then synthesized manually following solid-phase methodologies. Their ability to induce perturbations in model membranes has been analysed by measuring the penetration of such peptides in lipid monolayers and by a series of experiments based on tryptophan peptide fluorescence emission spectra. Besides, release of vesicular contents to the medium was monitored by the ANTS/DPX assay. The membrane destabilization properties of these peptides was found very related with the length of the sequence. 相似文献
8.
Structural properties of the amino acid sequences from 22 signal peptides have been analyzed and compared with peptides known to interact with biological membranes and liposomes, melittin, a lytic peptide of bee venom, and the non-polar C-terminal segment of cytochrome b5. All these peptides evidence a double amphipatic structure with an hydrophobic core of 9 to 24 amino acid residues and two charged polar ends. They all exhibit a high potential for making alpha-helix and, to a lesser degree, extended or beta-sheet conformation with low or negative potentials for making reverse turns or aperiodic conformation. A model of spontaneous insertion of these peptides into the lipid bilayer without specific surface receptor protein is proposed, where the two polar ends interact with each polar face of the lipid bilayer and the hydrophobic core inserts into the non-hydrogen bonding environment of the fatty acid side chains. This insertion could be the molecular trigger for ribophorin assembly around the signal peptide and subsequent attachment to the ribosome prior to the transfer of the polypeptide chain through the endoplasmic reticulum membrane. 相似文献
9.
10.
Cell membranes are phospholipid bilayers with a large number of embedded transmembrane proteins. Some of these proteins, such as scramblases, have properties that facilitate lipid flip-flop from one membrane leaflet to another. Scramblases and similar transmembrane proteins could also affect the translocation of other amphiphilic molecules, including cell-penetrating or antimicrobial peptides. We studied the effect of transmembrane proteins on the translocation of amphiphilic peptides through the membrane. Using two very different models, we consistently demonstrate that transmembrane proteins with a hydrophilic patch enhance the translocation of amphiphilic peptides by stabilizing the peptide in the membrane. Moreover, there is an optimum amphiphilicity because the peptide could become overstabilized in the transmembrane state, in which the peptide-protein dissociation is hampered, limiting the peptide translocation. The presence of scramblases and other proteins with similar properties could be exploited for more efficient transport into cells. The described principles could also be utilized in the design of a drug-delivery system by the addition of a translocation-enhancing peptide that would integrate into the membrane. 相似文献
11.
K Yoshida N Ohmori Y Mukai T Niidome T Hatakeyama H Aoyagi 《Journal of peptide science》1999,5(8):360-367
To investigate properties of hydrophilic bundled peptides and their interactions with phospholipid membranes, bundled peptides named [Trp2]- and [Trp12]-4alpha-46S9, which are composed of four fragments of amphiphilic 24-mer peptide, were designed and synthesized. Tryptophan (Trp) was introduced at the 2nd position from the N-terminal or at the centre (12th) of the helix to monitor the peptide-lipid interaction. Circular dichroism measurements indicated that the peptides had low alpha-helicities in a buffer solution (pH 7.4) and also in the presence of dipalmitoyl-DL-3-phosphatidylcholine (DPPC) vesicles. In the presence of DPPC/dipalmitoyl-DL-3-phosphatidylglycerol (DPPG) (3:1) vesicles, the measurement could not be taken because of turbidity induced by vesicle aggregation. Both peptides had moderate perturbation activity for both the neutral and acidic vesicles at 25 degrees C. The perturbation patterns at 50 degrees C were much different from those at 25 degrees C and the maximum activity reached 100% at a low peptide concentration. The results of the measurement of membrane fusion activity of peptides showed a similar tendency to that found in the perturbation experiment. A quenching experiment indicated that the Trp2 and Trp12 residues in [Trp2]- and [Trp12]-4alpha-46S9 were scarcely embedded in neutral lipid membranes. 相似文献
12.
Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes.
下载免费PDF全文

Deuterium (2H) NMR was used to study bilayer hydrophobic thickness and mechanical properties when cholesterol and/or synthetic amphiphillic polypeptides were added to deuterated POPC lipid bilayer membranes in the liquid-crystalline (fluid) phase. Smoothed acyl chain orientational order profiles were used to calculate bilayer hydrophobic thickness. Addition of 30 mol% cholesterol to POPC at 25 degrees C increased the bilayer thickness from 2.58 to 2.99 nm. The peptides were chosen to span the bilayers with more or less mismatch between the hydrophobic peptide length and membrane hydrophobic thickness. The average thickness of the pure lipid bilayers was significantly perturbed upon addition of peptide only in cases of large mismatch, being increased (decreased) when the peptide hydrophobic length was greater (less) than that of the pure bilayer, consistent with the "mattress" model of protein lipid interactions (Mouritsen, O.G., and M. Bloom. 1984. Biophys. J. 46:141-153). The experimental results were also used to examine the combined influence of the polypeptides and cholesterol on the orientational order profile and thickness expansivity of the membranes. A detailed model for the spatial distribution of POPC and cholesterol molecules in the bilayers was proposed to reconcile the general features of these measurements with micromechanical measurements of area expansivity in closely related systems. Experiments to test the model were proposed. 相似文献
13.
F. Campelo 《Journal of chemical biology》2009,2(2):65-80
Anchoring molecules, like amphiphilic polymers, are able to dynamically regulate membrane morphology. Such molecules insert their hydrophobic groups into the bilayer, generating a local membrane curvature. In order to minimize the elastic energy penalty, a dynamic shape instability may occur, as in the case of the curvature-driven pearling instability or the polymer-induced tubulation of lipid vesicles. We review recent works on modeling of such instabilities by means of a mesoscopic dynamic model of the phase-field kind, which take into account the bending energy of lipid bilayers. 相似文献
14.
The impact of peptides on lipid membranes 总被引:1,自引:0,他引:1
We review the fundamental strategies used by small peptides to associate with lipid membranes and how the different strategies impact on the structure and dynamics of the lipids. In particular we focus on the binding of amphiphilic peptides by electrostatic and hydrophobic forces, on the anchoring of peptides to the bilayer by acylation and prenylation, and on the incorporation of small peptides that form well-defined channels. The effect of lipid-peptide interactions on the lipids is characterized in terms of lipid acyl-chain order, membrane thickness, membrane elasticity, permeability, lipid-domain and annulus formation, as well as acyl-chain dynamics. The different situations are illustrated by specific cases for which experimental observations can be interpreted and supplemented by theoretical modeling and simulations. A comparison is made with the effect on lipids of trans-membrane proteins. The various cases are discussed in the context of the possible roles played by lipid-peptide interactions for the biological, physiological, and pharmacological function of peptides. 相似文献
15.
16.
Voïtchovsky K Antoranz Contera S Kamihira M Watts A Ryan JF 《Biophysical journal》2006,90(6):2075-2085
Purple membranes (PM) are two-dimensional crystals formed by bacteriorhodopsin and a variety of lipids. The lipid composition and density in the cytoplasmic (CP) leaflet differ from those of the extracellular (EC) leaflet. A new way of differentiating the two sides of such asymmetric membranes using the phase signal in alternate contact atomic force microscopy is presented. This method does not require molecular resolution and is applied to study the stiffness and intertrimer lipid mobility in both leaflets of the PM independently over a broad range of pH and salt concentrations. PM stiffens with increasing salt concentration according to two different regimes. At low salt concentration, the membrane Young's normal modulus grows quickly but differentially for the EC and CP leaflets. At higher salt concentration, both leaflets behave similarly and their stiffness converges toward the native environment value. Changes in pH do not affect PM stiffness; however, the crystal assembly is less pronounced at pH > or = 10. Lipid mobility is high in the CP leaflet, especially at low salt concentration, but negligible in the EC leaflet regardless of pH or salt concentration. An independent lipid mobility study by solid-state NMR confirms and quantifies the atomic force microscopy qualitative observations. 相似文献
17.
Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers. 总被引:5,自引:0,他引:5
下载免费PDF全文

The synthetic 25-residue signal peptide of cytochrome c oxidase subunit IV was labelled with the fluorophor 7-nitrobenz-2-oxa-1,3-diazole (NBD) at its single cysteine residue. Addition of small unilamellar vesicles of 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) to the labelled peptide resulted in a shift of the NBD excitation and emission spectra to shorter wavelengths. Binding of the peptide to the vesicles was measured by the increase in the fluorescence emission yield. A surface partition constant of (3.9 +/- 0.5) x 10(3) M-1 was derived from these titrations. When the membrane contained, in addition to POPC, negatively charged 1-palmitoyl 2-oleoyl phosphatidylglycerol (POPG), the NBD fluorescence spectra were further shifted to shorter wavelengths and exhibited increased quantum yields. The apparent partition constants were increased to 10(4)-10(5) M-1 for vesicles with 20 or 100 mol% POPG. Lateral diffusion of the peptide was measured by fluorescence recovery after photobleaching in multibilayers of POPC, POPG, POPC/POPG (4:1) and 1,2-dimyristoyl phosphatidylcholine. The lateral diffusion coefficients of the peptide in bilayers of POPC (8 x 10(-8) cm2/s at 21 degrees C) were 1.5-1.6-fold greater than those of NBD-labelled phospholipids (5 x 10(-8) cm2/s at 21 degrees C), but 1.5-1.8-fold smaller (3 x 10(-8) cm2/s in 20% POPG and at 21 degrees C) than the lipid diffusion coefficients in the negatively charged bilayers. It is concluded that the signal peptide associates with phospholipid bilayers in two different forms, which depend on the lipid charge. The experiments with POPC bilayers are well explained by a model in which the peptide partitions into the region of the phospholipid head-groups and diffuses along the membrane/water interface. If POPG is present in the membrane, electrostatic attractions between the basic residues of the peptide and the acidic lipid head-groups result in a deeper penetration of the bilayer. For this case, two models that are both consistent with the experimental data are discussed, in which the peptide either forms an oligomer of three to six partially helical membrane-spanning monomers, or inserts into the bilayer with its amphiphilic helical segment aligned parallel to the plane of the membrane and located near the head-group and outer hydrocarbon region of the bilayer. 相似文献
18.
Since phospholipid synthesis is generally confined to one leaflet of a membrane, membrane growth requires phospholipid translocation (flip-flop). It is generally assumed that this process is protein-mediated; however, the mechanism of flip-flop remains elusive. Previously, we have demonstrated flop of 2-[6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]caproyl] (C6NBD) phospholipids, induced by the presence of membrane-spanning peptides in vesicles composed of an Escherichia coli phospholipid extract, supporting the hypothesis that the presence of transmembrane stretches of proteins in the bilayer is sufficient to allow phospholipid flip-flop in the inner membrane of E. coli [Kol et al. (2001) Biochemistry 40, 10500]. Here, we investigated whether the specific phospholipid composition of E. coli is a prerequisite for transmembrane helix-induced flop of phospholipids. This was tested by determining the amount of C6NBD-phospholipid that was translocated from the inner leaflet to the outer leaflet of a model membrane in time, using a dithionite reduction assay. The transmembrane peptides GWWL(AL)8WWA (WALP23) and GKKL(AL)8KKA (KALP23) induced phospholipid flop in model membranes composed of various lipid mixtures. The rate of peptide-induced flop was found to decrease with increasing dioleoylphosphatidylethanolamine (DOPE) content of vesicles composed of DOPE and dioleoylphosphatidylcholine (DOPC), and the rate of KALP23-induced flop was shown to be stimulated by higher dioleoylphosphatidylglycerol (DOPG) content in model membranes composed of DOPG and DOPC. Furthermore, the incorporation of cholesterol had an inhibitory effect on peptide-induced flop. Finally, flop efficiency was strongly dependent on the phospholipid headgroup of the NBD-phospholipid analogue. Possible implications for transmembrane helix-induced flop in biomembranes in general are discussed. 相似文献
19.
A model of lipid bilayer membrane in water has been developed. Parameters have been selected that allow molecular dynamics
simulation of lipid bilayers in the all-atom approximation. The calculated indices of packing and mobility of lipid molecules
for the liquid crystalline state of the bilayer agree well with the experimental data. Based on the model of the liquid crystalline
state of the membrane, a system in the gel-like state has been constructed. The gel-state model reproduces well the packing
of lipids in real bilayers, whereas the mobility of molecules proves to be overestimated. 相似文献
20.
Schneggenburger PE Beerlink A Weinhausen B Salditt T Diederichsen U 《European biophysics journal : EBJ》2011,40(4):417-436
Studying membrane active peptides or protein fragments within the lipid bilayer environment is particularly challenging in
the case of synthetically modified, labeled, artificial, or recently discovered native structures. For such samples the localization
and orientation of the molecular species or probe within the lipid bilayer environment is the focus of research prior to an
evaluation of their dynamic or mechanistic behavior. X-ray scattering is a powerful method to study peptide/lipid interactions
in the fluid, fully hydrated state of a lipid bilayer. For one, the lipid response can be revealed by observing membrane thickening
and thinning as well as packing in the membrane plane; at the same time, the distinct positions of peptide moieties within
lipid membranes can be elucidated at resolutions of up to several angstroms by applying heavy-atom labeling techniques. In
this study, we describe a generally applicable X-ray scattering approach that provides robust and quantitative information
about peptide insertion and localization as well as peptide/lipid interaction within highly oriented, hydrated multilamellar
membrane stacks. To this end, we have studied an artificial, designed β-helical peptide motif in its homodimeric and hairpin variants adopting different states of oligomerization. These peptide
lipid complexes were analyzed by grazing incidence diffraction (GID) to monitor changes in the lateral lipid packing and ordering.
In addition, we have applied anomalous reflectivity using synchrotron radiation as well as in-house X-ray reflectivity in
combination with iodine-labeling in order to determine the electron density distribution ρ(z) along the membrane normal (z axis), and thereby reveal the hydrophobic mismatch situation as well as the position of certain amino acid side chains within
the lipid bilayer. In the case of multiple labeling, the latter technique is not only applicable to demonstrate the peptide’s
reconstitution but also to generate evidence about the relative peptide orientation with respect to the lipid bilayer. 相似文献