首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular responses to LPS are mediated by a cell surface receptor complex consisting of Toll-like receptor 4 (TLR4), MD-2, and CD14. MD-2 is a secreted protein that interacts with the extracellular portion of TLR4. Site-directed mutagenesis was used to identify the regions of human MD-2 involved in its ability to bind TLR4 and confer LPS responsiveness. A separate region of MD-2 was found to mediate each function. MD-2 binding to TLR4 was dependent on Cys(95) and Cys(105), which might form an intramolecular disulfide bond. Hydrophilic and charged residues surrounding this area, such as R90, K91, D100, and Y102, also contributed to the formation of the TLR4-MD-2 complex. A different region of MD-2 was found to be responsible for conferring LPS responsiveness. This region is not involved in TLR4 binding and is rich in basic and aromatic residues, several of which cooperate for LPS responsiveness and might represent a LPS binding site. Disruption of the endogenous MD-2-TLR4 complex by expression of mutant MD-2 inhibited LPS responses in primary human endothelial cells. Thus, our data indicate that MD-2 interaction with TLR4 is necessary but not sufficient for cellular response to LPS. Either of the two functional domains of MD-2 can be disrupted to impair LPS responses and therefore represent attractive targets for therapeutic interventions.  相似文献   

2.
MD-2 associates with the extracellular domain of Toll-like receptor 4 (TLR4) and greatly enhances LPS signaling via TLR4. Taxol, which mimics the action of LPS on murine macrophages, induces signals via mouse TLR4-MD-2, but not via human TLR4-MD-2. Here we investigated the molecular basis for this species-specific action of Taxol. Expression of mouse MD-2 conferred both LPS and Taxol responsiveness on human embryonic kidney 293 cells expressing mouse TLR4, whereas expression of human MD-2 conferred LPS responsiveness alone, suggesting that MD-2 is responsible for the species-specificity as to Taxol responsiveness. Furthermore, mouse MD-2 mutants, in which Gln(22) was changed to other amino acids, showed dramatically reduced ability to confer Taxol responsiveness, although their ability to confer LPS responsiveness was not affected. These results indicated that Gln(22) of mouse MD-2 is essential for Taxol signaling but not for LPS signaling.  相似文献   

3.
The expression of MD-2, which associates with Toll-like receptor (TLR) 4 on the cell surface, confers LPS and LPS-mimetic Taxol responsiveness on TLR4. Alanine-scanning mutagenesis was performed to identify the mouse MD-2 residues important for conferring LPS and Taxol responsiveness on mouse TLR4, and for forming the cell surface TLR4-MD-2 complex recognized by anti-TLR4-MD-2 Ab MTS510. Single alanine mutations were introduced into mouse MD-2 (residues 17-160), and the mutants were expressed in a human cell line expressing mouse TLR4. Mouse MD-2 mutants, in which a single alanine mutation was introduced at Cys37, Leu71, Leu78, Cys95, Tyr102, Cys105, Glu111, Val113, Ile117, Pro118, Phe119, Glu136, Ile138, Leu146, Cys148, or Thr152, showed dramatically reduced ability to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510, and the mutants also showed reduced ability to confer LPS and Taxol responsiveness. In contrast, mouse MD-2 mutants, in which a single alanine mutation was introduced at Tyr34, Tyr36, Gly59, Val82, Ile85, Phe126, Pro127, Gly129, Ile153, Ile154, and His155 showed normal ability to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510, but their ability to confer LPS and Taxol responsiveness was apparently reduced. These results suggest that the ability of MD-2 to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510 is essential for conferring LPS and Taxol responsiveness on TLR4, but not sufficient. In addition, the required residues at codon numbers 34, 85, 101, 122, and 153 for the ability of mouse MD-2 to confer LPS responsiveness are partly different from those for Taxol responsiveness.  相似文献   

4.
The detection of Gram-negative LPS depends upon the proper function of the TLR4-MD-2 receptor complex in immune cells. TLR4 is the signal transduction component of the LPS receptor, whereas MD-2 is the endotoxin-binding unit. MD-2 appears to activate TLR4 when bound to TLR4 and ligated by LPS. Only the monomeric form of MD-2 was found to bind LPS and only monomeric MD-2 interacts with TLR4. Monomeric MD-2 binds TLR4 with an apparent Kd of 12 nM; this binding avidity was unaltered in the presence of endotoxin. E5564, an LPS antagonist, appears to inhibit cellular activation by competitively preventing the binding of LPS to MD-2. Depletion of endogenous soluble MD-2 from human serum, with an immobilized TLR4 fusion protein, abrogated TLR4-mediated LPS responses. By determining the concentration of added-back MD-2 that restored normal LPS responsiveness, the concentration of MD-2 was estimated to be approximately 50 nM. Similarly, purified TLR4-Fc fusion protein, when added to the supernatants of TLR4-expressing cells in culture, inhibited the interaction of MD-2 with TLR4, thus preventing LPS stimulation. The ability to inhibit the effects of LPS as a result of the binding of TLR4-Fc or E5564 to MD-2 highlights MD-2 as the logical target for drug therapies designed to pharmacologically intervene against endotoxin-induced disease.  相似文献   

5.
Taxol, an antitumor agent derived from a plant, mimics the action of lipopolysaccharide (LPS) in mice but not in humans. Although Taxol is structurally unrelated to LPS, Taxol and LPS are presumed to share a receptor or signaling molecule. The LPS-mimetic activity of Taxol is not observed in LPS-hyporesponsive C3H/HeJ mice, which possess a point mutation in Toll-like receptor 4 (TLR4); therefore, TLR4 appears to be involved in both Taxol and LPS signaling. In addition, TLR4 was recently shown to physically associate with MD-2, a molecule that confers LPS responsiveness on TLR4. To determine whether TLR4.MD-2 complex mediates a Taxol-induced signal, we constructed transformants of the mouse pro-B cell line, Ba/F3, expressing mouse TLR4 alone, both mouse TLR4 and mouse MD-2, and both mouse MD-2 and mouse TLR4 lacking the cytoplasmic portion, and then examined whether Taxol induced NFkappaB activation in these transfectants. Noticeable NFkappaB activation by Taxol was detected in Ba/F3 expressing mouse TLR4 and mouse MD-2 but not in the other transfectants. Coexpression of human TLR4 and human MD-2 did not confer Taxol responsiveness on Ba/F3 cells, suggesting that the TLR4. MD-2 complex is responsible for the species specificity with respect to Taxol responsiveness. Furthermore, Taxol-induced NFkappaB activation via TLR4.MD-2 was blocked by an LPS antagonist that blocks LPS-induced NFkappaB activation via TLR4.MD-2. These results demonstrated that coexpression of mouse TLR4 and mouse MD-2 is required for Taxol responsiveness and that the TLR4.MD-2 complex is the shared molecule in Taxol and LPS signal transduction in mice.  相似文献   

6.
Toll-like receptor 4 (TLR4) and MD-2 are pivotal components that elicit inflammatory responses to lipopolysaccharide (LPS). They have been shown to form a physical complex on the cell surface that responds directly to LPS. However, the functional region of TLR4 required for association with MD-2 and LPS responsiveness is poorly understood. To identify the region of TLR4, we created a series of mutants with deletions in the extracellular domain and examined their activities in human embryonic kidney 293 cells. A mutant with a 317-amino acid deletion from the membrane proximal region of TLR4 was capable of associating with MD-2, while only a 9-amino acid truncation of the N terminus severely impaired the interaction. The association between the two molecules was well correlated with TLR4 maturation into an endoglycosidase H-resistant form and the cell surface expression. Mouse MD-2 bound to human TLR4, but its activity to facilitate the cell surface expression of TLR4 and confer LPS responsiveness was much weaker than that of human MD-2, indicating species specificity. A chimeric receptor composed of the N-terminal region of human TLR4 and the adjacent region of mouse TLR4 showed preference for human MD-2 in its transport to the cell surface and responsiveness to LPS. Taken together, the N-terminal region of TLR4 is essential for association with MD-2, which is required for the cell surface expression and hence the responsiveness to LPS.  相似文献   

7.
Intestinal epithelial cells (IEC) have adapted to the presence of commensal bacteria through a state of tolerance that involves a limited response to lipopolysaccharide (LPS). Low or absent expression of two LPS receptor molecules, the myeloid differentiation (MD)-2 receptor, and toll-like receptor (TLR)4 was suggested to underlie LPS tolerance in IEC. In the present study we performed transfections of TLR4 and MD-2 alone or combined in different IEC lines derived from intestinal cancer (Caco-2, HT-29, and SW837). We found that LPS responsiveness increased more than 100-fold when IEC were transfected with MD-2 alone, but not TLR4. The release of interleukin (IL)-8, but also the expression of cyclooxygenase (Cox-)2 and the related secretion of prostaglandin (PG)E2 were coordinately stimulated by LPS in IEC transfected with MD-2 alone. Supernatants collected from MD-2-transfected IEC supported LPS activation of naïve HT-29, providing additional support to the concept that MD-2 alone endows IEC with LPS responsiveness. LPS responsiveness detected at concentrations as low as 110 pg/ml, and maximal values obtained by 10 ng/ml were clearly beyond those evoked by classical stimuli as IL-1β. In polarized cells, apical LPS stimulation was markedly more efficient than basolateral. Our data contradict previous opinion that both TLR4 and MD-2 limit IEC response to LPS, and emphasize the prominent role of MD-2 in intestinal immune responses to Gram-negative bacteria.  相似文献   

8.
Three cell-surface proteins have been recognized as components of the mammalian signaling receptor for bacterial lipopolysaccharide (LPS): CD14, Toll-like receptor-4 (TLR4), and MD-2. Biochemical and visual studies shown here demonstrate that the role of CD14 in signal transduction is to enhance LPS binding to MD-2, although its expression is not essential for cellular activation. These studies clarify how MD-2 functions: we found that MD-2 enables TLR4 binding to LPS and allows the formation of stable receptor complexes. MD-2 must be bound to TLR4 on the cell surface before binding can occur. Consequently, TLR4 clusters into receptosomes (many of which are massive) that recruit intracellular toll/IL-1/resistance domain-containing adapter proteins within minutes, thus initiating signal transduction. TLR4 activation correlates with the ability of MD-2 to bind LPS, as MD-2 mutants that still bind TLR4, but are impaired in the ability to bind LPS, conferred a greatly blunted LPS response. These findings help clarify the earliest events of TLR4 triggering by LPS and identify MD-2 as an attractive target for pharmacological intervention in endotoxin-mediated diseases.  相似文献   

9.
髓样分化蛋白-2在识别和转导内毒素信号中的作用   总被引:1,自引:0,他引:1  
脂多糖(LPS)通过TLR4介导细胞炎症反应.研究表明,髓样分化蛋白-2(MD-2)通过与TLR4形成复合物参与LPS诱导的细胞信号过程.TLR4/MD-2复合物中的MD-2结合LPS后,引起TLR4低聚化,进而激发下游信号.MD-2合成后,大部分在内质网/高尔基体和TLR4结合,然后以TLR4/MD-2复合物的形式在细胞表面表达.这既能调节TLR4的胞内分布,又能辅助TLR4识别LPS.还有一部分MD-2释放到血浆中,形成可溶性的MD-2(sMD-2).sMD-2在CD14参与下,能结合血浆中的LPS,形成LPS-sMD-2复合物从而辅助只表达TLR4而不表达MD-2的细胞识别LPS,但过度表达的sMD-2又能抑制LPS信号.MD-2在TLR4介导的内毒素识别和信号转导过程中发挥了重要的调控作用.  相似文献   

10.
Toll-like receptor 4 and MD-2 form a receptor for lipopolysaccharide (LPS), a major constituent of Gram-negative bacteria. MD-2 is a 20-25-kDa extracellular glycoprotein that binds to Tolllike receptor 4 (TLR4) and LPS and is a critical part of the LPS receptor. Here we have shown that the level of MD-2 expression regulates TLR4 activation by LPS. Using site-directed mutagenesis, we have found that glycosylation has no effect on MD-2 function as a membrane receptor for LPS. We used alanine-scanning mutagenesis to identify regions of human MD-2 that are important for TLR4 and LPS binding. We found that mutation in the N-terminal 46 amino acids of MD-2 did not substantially diminish LPS activation of Chinese hamster ovary (CHO) cells co-transfected with TLR4 and mutant MD-2. The residues 46-50 were important for LPS activation but not LPS binding. The residues 79-83, 121-124, and 125-129 are identified as important in LPS activation but not surface expression of membrane MD-2. The function of soluble MD-2 is somewhat more sensitive to mutation than membrane MD-2. Our results suggest that the 46-50 and 127-131 regions of soluble MD-2 bind to TLR4. The region 79-120 is not involved in LPS binding but affects monomerization of soluble MD-2 as well as TLR4 binding. We define the LPS binding region of monomeric soluble MD-2 as a cluster of basic residues 125-131. Studies on both membrane and soluble MD-2 suggest that domains of MD-2 for TLR4 and LPS binding are separate as well as overlapping. By mapping these regions on a three-dimensional model, we show the likely binding regions of MD-2 to TLR4 and LPS.  相似文献   

11.
Lipid A (a hexaacylated 1,4' bisphosphate) is a potent immune stimulant for TLR4/MD-2. Upon lipid A ligation, the TLR4/MD-2 complex dimerizes and initiates signal transduction. Historically, studies also suggested the existence of TLR4/MD-2-independent LPS signaling. In this article, we define the role of TLR4 and MD-2 in LPS signaling by using genome-wide expression profiling in TLR4- and MD-2-deficient macrophages after stimulation with peptidoglycan-free LPS and synthetic Escherichia coli lipid A. Of the 1396 genes significantly induced or repressed by any one of the treatments in the wild-type macrophages, none was present in the TLR4- or MD-2-deficient macrophages, confirming that the TLR4/MD-2 complex is the only receptor for endotoxin and that both are required for responses to LPS. Using a molecular genetics approach, we investigated the mechanism of TLR4/MD-2 activation by combining the known crystal structure of TLR4/MD-2 with computer modeling. According to our murine TLR4/MD-2-activation model, the two phosphates on lipid A were predicted to interact extensively with the two positively charged patches on mouse TLR4. When either positive patch was abolished by mutagenesis into Ala, the responses to LPS and lipid A were nearly abrogated. However, the MyD88-dependent and -independent pathways were impaired to the same extent, indicating that the adjuvant activity of monophosphorylated lipid A most likely arises from its decreased potential to induce an active receptor complex and not more downstream signaling events. Hence, we concluded that ionic interactions between lipid A and TLR4 are essential for optimal LPS receptor activation.  相似文献   

12.
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.  相似文献   

13.
髓样分化蛋白-2在天然免疫中的作用   总被引:1,自引:0,他引:1  
Xu FL  Li L 《生理科学进展》2004,35(2):139-142
Toll样受体 (Toll likereceptor ,TLR)家族作为模式识别受体 ,在天然免疫中具有重要作用。髓样分化蛋白 2 (myeloiddifferentialprotein 2 ,MD 2 )可能含有两个相对独立的功能结构域 ,既能与Toll样受体家族中的TLR4、TLR2结合 ,也能与多种配体结合 (包括lipopolysaccharide ,LPS)。这种特殊的结构可能与其三方面的主要功能有关 :(1)MD 2与TLR4结合 ,赋予TLR4对各种配体 (包括LPS)的反应性 ;(2 )MD 2与TLR2结合 ,赋予TLR2对LPS的反应性 ,并增强TLR2对细菌及其胞壁成分的反应性 ;(3)MD 2能促进TLR4和TLR2的表达 ,并且与TLR4在细胞内的分布密切相关。这表明MD 2可以通过两种方式直接或间接调控TLRs的功能 :与TLR2 /TLR4结合 ,或调控TLR2 /TLR4的表达与分布。因而MD 2不仅仅是TLR4的辅助分子 ,而且还是天然免疫中的调控分子 ,可能在感染、炎症、免疫等病理生理过程中具有更广泛的生物学功能  相似文献   

14.
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.  相似文献   

15.
Toll-like receptor 4 (TLR4) is a signaling receptor for lipopolysaccharide (LPS), but its interaction with MD-2 is required for efficient responses to LPS. Previous studies with deletion mutants indicate a critical role of the amino-terminal TLR4 region in interaction with MD-2. However, it is uncertain which region in the TLR4 molecule directly binds to MD-2. The purpose of this study was to determine a critical stretch of primary sequence in the TLR4 region that directly binds MD-2 and is critical for LPS signaling. The synthetic TLR4 peptide corresponding to the TLR4 region Glu(24)-Lys(47) directly binds to recombinant soluble MD-2 (sMD-2). The TLR4 peptide inhibited the binding of a recombinant soluble form of the extracellular TLR4 domain (sTLR4) to sMD-2 and significantly attenuated LPS-induced NF-kappaB activation and IL-8 secretion in wild type TLR4-transfected cells. Reduction and S-carboxymethylation of sTLR4 abrogated its association with sMD-2. The TLR4 mutants, TLR4(C29A), TLR4(C40A), and TLR4(C29A,C40A), were neither co-precipitated with MD-2 nor expressed on the cell surface and failed to transmit LPS signaling. These results demonstrate that the TLR4 region Glu(24)-Lys(47) is a site for MD-2 binding and that Cys(29) and Cys(40) within this region are critical residues for MD-2 binding and LPS signaling.  相似文献   

16.
We analysed the lipopolysaccharide (LPS)-recognition mechanism in cells expressing TLR4 and CD14 but lacking MD-2. When TLR4 and CD14 were transiently expressed in HEK293 cells, cell-surface expression of TLR4 was observed, although the expression level was lower than that in cells coexpressing MD-2. We found that membrane CD14-TLR4 complexes were formed in these cells in response to LPS stimulation even in the absence of MD-2 expression, although NF-kappaB-dependent reporter activity was not induced. A strong activation of NF-kappaB was observed when these cells were stimulated with LPS followed by soluble MD-2 in this order, even when excess LPS was removed after formation of the CD14-TLR4 complex by washing cells prior to sMD-2 addition. From these results, we propose an additional LPS-recognition mechanism. In cells expressing TLR4 and CD14 but lacking MD-2, LPS is first transferred to membrane CD14 with the aid of LPS binding protein, which leads to the formation of the TLR4-CD14 complex. Then, the binding of soluble MD-2 to this complex triggers the transmembrane signal transduction. Cells expressing TLR4 and CD14 but lacking MD-2, such as airway epithelial cells, may be activated in response to LPS by this mechanism.  相似文献   

17.
18.
The receptor complex resulting from association of MD-2 and the ectodomain of Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signal transduction across the cell membrane. We prepared a tertiary structure model of MD-2, based on the known structures of homologous lipid-binding proteins. Analysis of circular dichroic spectra of purified bacterially expressed MD-2 indicates high content of beta-type secondary structure, in agreement with the structural model. Bacterially expressed MD-2 was able to confer LPS responsiveness to cells expressing TLR4 despite lacking glycosylation. We identified several clusters of basic residues on the surface of MD-2. Mutation of each of two clusters encompassing the residues Lys(89)-Arg(90)-Lys(91) and Lys(125)-Lys(125) significantly decreased the signal transduction of the respective MD-2 mutants either upon co-expression with TLR4 or upon addition as soluble protein into the supernatant of cells overexpressing TLR4. These basic clusters lie at the edge of the beta-sheet sandwich, which in cholesterol-binding protein connected to Niemann-Pick disease C2 (NPC2), dust mite allergen Der p2, and ganglioside GM2-activator protein form a hydrophobic pocket. In contrast, mutation of another basic cluster composed of Arg(69)-Lys(72), which according to the model lies further apart from the hydrophobic pocket only weakly decreased MD-2 activity. Furthermore, addition of the peptide, comprising the surface loop between Cys(95) and Cys(105), predicted by model, particularly in oxidized form, decreased LPS-induced production of tumor necrosis factor alpha and interleukin-8 upon application to monocytic cells and fibroblasts, respectively, supporting its involvement in LPS signaling. Our structural model of MD-2 is corroborated by biochemical analysis and contributes to the unraveling of molecular interactions in LPS recognition.  相似文献   

19.
We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4. To elucidate the specific molecular components that mediate antagonism, we developed a recombinant human TLR4 signaling complex that displayed efficient LPS-dependent antagonism of E. coli LPS in HEK293 cells. Notably, changes in the expression levels of TLR4 in HEK293 cells modulated the efficiency of antagonism by P. gingivalis LPS. Both soluble (s) CD14 and membrane (m) CD14 supported efficient P. gingivalis LPS-dependent and msbB LPS-dependent antagonism of E. coli LPS in the recombinant TLR4 system. When cells expressing TLR4, MD-2, and mCD14 were exposed to LPS in the absence of serum-derived LBP, efficient LPS-dependent antagonism of E. coli LPS was still observed indicating that LPS-dependent antagonism occurs downstream of LBP. Experiments using immunoprecipitates of sCD14 or sMD-2 that had been pre-exposed to agonist and antagonist indicated that LPS-dependent antagonism occurs partially at sCD14 and potently at sMD-2. This study provides novel evidence that expression levels of TLR4 can modulate the efficiency of LPS-dependent antagonism. However, MD-2 represents the principal molecular component that tetra-acylated P. gingivalis LPS and penta-acylated msbB LPS use to antagonize hexa-acylated E. coli LPS at the TLR4 signaling complex.  相似文献   

20.
Down-regulation of cell surface expression of Toll-like receptor (TLR) 4 following LPS stimulation has been suggested to underlie endotoxin tolerance. In this study, we examined whether overexpression of TLR2 or TLR4 would affect the ability of cells to become tolerant to LPS or the mycobacterial components, arabinose-capped lipoarabinomannan (LAM) and soluble tuberculosis factor (STF). To this end, Chinese hamster ovary/CD14 cells stably transfected with a NF-kappaB-dependent reporter construct, endothelial leukocyte adhesion molecule CD25 (the 3E10 clone), were engineered to overexpress either human TLR2 or TLR4. Transfected TLRs exhibited proper signaling functions, as evidenced by increased LPS responsiveness of 3E10/TLR4 cells and acquisition of sensitivity to TLR2-specific ligands upon transfection of TLR2 into TLR2-negative 3E10 cells. Pretreatment of cells with LPS, LAM, or STF did not modulate TLR2 or TLR4 cell surface expression. Following LPS exposure, 3E10, 3E10/TLR2, and 3E10/TLR4 cells exhibited comparable decreases in LPS-mediated NF-kappaB activation and mitogen-activated protein (MAP) kinase phosphorylation. Likewise, LPS pretreatment profoundly inhibited LPS-induced NF-kappaB translocation in Chinese hamster ovary cells that concomitantly overexpressed human TLR4 and myeloid differentiation protein-2 (MD-2), but failed to modulate TLR4 or MD-2 cell surface expression. Pretreatment of 3E10/TLR2 cells with LAM or STF decreased their NF-kappaB responses induced by subsequent stimulation with these substances or LPS. Conversely, prior exposure of 3E10/TLR2 cells to LPS led to hyporesponsiveness to LPS, LAM, and STF, indicating that LPS and mycobacterial products induce cross-tolerance. Thus, tolerance to LPS and mycobacterial components cannot be attributed solely to a decrease in TLR/MD-2 expression levels, suggesting inhibition of expression or function of other signaling intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号